Температура. Тепловое равновесие. Абсолютная шкала температур. Молекулярная физика. Что такое температура? Единицы измерения температуры - градусы. Температура пара и газа Что таоке температура в физике

ТЕМПЕРАТУРА И ЕЁ ИЗМЕРЕНИЕ.

ЭКСПЕРИМЕНТАЛЬНЫЕ ГАЗОВЫЕ ЗАКОНЫ.

1.Тепловое равновесие. Температура.

Температура – это физическая величина, характеризующая степень нагретости тела. Если два тела разной температуры привести в соприкосновение, то, как показывает опыт, более нагретое тело будет охлаждаться, а менее нагретое – нагреваться, т.е. происходит теплообмен – передача энергии от более нагретого тела к менее нагретому без совершения работы.

Энергия, передаваемая при теплообмене, называется количеством теплоты .

Через некоторое время после приведения тел в соприкосновение они приобретают одинаковую степень нагретости, т.е. приходят в состояние теплового равновесия .

Тепловое равновесие – это такое состояние системы тел, находящихся в тепловом контакте, при котором теплообмен не происходит и все макропараметры тел остаются неизменными, если внешние условия не меняются.

При этом два параметра – объём и давление – могут быть различными для разных тел системы, а третий, температура, в случае теплового равновесия одинаков для всех тел системы. На этом основано определение температуры.

Физический параметр, одинаковый для всех тел системы, находящихся в состоянии теплового равновесия, называется температурой этой системы.

Например, система состоит из двух сосудов с газом. Приведём их в соприкосновение. Объём и давление газа в них могут быть различными, а температура в результате теплообмена станет одинаковой.

2.Измерение температуры.

Для измерения температуры используют физические приборы – термометры, в которых о величине температуры судят по изменению какого-либо параметра.

Для создания термометра необходимо:

    Выбрать термометрическое вещество, параметры (характеристики) которого изменяются при изменении температуры (например, ртуть, спирт и т.д.);

    Выбрать термометрическую величину, т.е. величину, которая изменяется с изменением температуры (например, высота ртутного или спиртового столбика, величина электрического сопротивления и т.д.);

    Откалибровать термометр, т.е. создать шкалу, по которой будет производиться отсчёт температуры. Для этого термометрическое тело приводится в тепловой контакт с телами, температуры которых постоянны. Например, при построении шкалы Цельсия температура смеси воды и льда в состоянии плавления принимается за 0 0 С, а температура смеси водяного пара и воды в состоянии кипения при давлении 1 атм. – за 100 0 С. Отмечается положение столбика жидкости в обоих случаях, а затем расстояние между полученными метками делится на 100 делений.

При измерении температуры термометр приводят в тепловой контакт с телом, температура которого измеряется, и после того, как установится тепловое равновесие (показания термометра перестанут меняться), считывается показание термометра.

3.Экспериментальные газовые законы.

Параметры, описывающие состояние системы, взаимозависимы. Установить зависимость друг от друга сразу трёх параметров сложно, поэтому немного упростим задачу. Рассмотрим процессы, при которых

а) количество вещества (или масса) постоянно, т.е. ν=const (m=const);

б) значение одного из параметров фиксировано, т.е. постоянно либо давление, либо объём, либо температура.

Такие процессы называются изопроцессами .

1).Изотермический процесс, т.е. процесс, происходящий с одним и тем же количеством вещества при постоянной температуре.

Исследован Бойлем (1662 г.) и Мариоттом (1676 г.).

Упрощённая схема опытов такова. Рассмотрим сосуд с газом, закрытый подвижным поршнем, на который устанавливаются грузики, уравновешивающие давление газа.

Опыт показал, что произведение давления на объём газа при постоянной температуре есть величина постоянная. Это значит

PV = const

Закон Бойля-Мариотта .

Объём V данного количества газа ν при постоянной температуре t 0 обратно пропорционален его давлению, т.е. .

Графики изотермических процессов.

График зависимости давления от объёма при постоянной температуре называется изотермой. Чем больше температура, тем выше на графике располагается изотерма.

2).Изобарный процесс, т.е. процесс, происходящий с одним и тем же количеством вещества при постоянном давлении.

Исследован Гей-Люссаком (1802 г.).

Упрощённая схема такова. Сосуд с газом закрыт подвижным поршнем, на котором установлен грузик, уравновешивающий давление газа. Сосуд с газом нагревается.

Опыт показал, что при нагревании газа при постоянном давлении его объём изменяется по следующему закону: где V 0 – объём газа при температуре t 0 = 0 0 C; V – объём газа при температуре t 0 , α v – температурный коэффициент объёмного расширения,

Закон Гей-Люссака .

Объём данного количества газа при постоянном давлении линейно зависит от температуры.

Графики изобарных процессов.

График зависимости объёма газа от температуры при постоянном давлении называется изобарой.

Если экстраполировать (продолжить) изобары в область низких температур, то все они сойдутся в точке, соответствующей температуре t 0 = - 273 0 С.

3).Изохорный процесс , т.е. процесс, происходящий с одним и тем же количеством вещества при постоянном объёме.

Исследован Шарлем (1802 г.).

Упрощённая схема такова. Сосуд с газом закрыт подвижным поршнем, на который устанавливаются грузики, уравновешивающие давление газа. Сосуд нагревается.

Опыт показал, что при нагревании газа при постоянном объёме его давление изменяется по следующему закону: где P 0 – объём газа при температуре t 0 = 0 0 C; P – объём газа при температуре t 0 , α p – температурный коэффициент давления,

Закон Шарля .

Давление данного количества газа при постоянном объёме линейно зависит от температуры.

График зависимости давления газа от температуры при постоянном объёме называется изохорой.

Если экстраполировать (продолжить) изохоры в область низких температур, то все они сойдутся в точке, соответствующей температуре t 0 = - 273 0 С.

4.Абсолютная термодинамическая шкала.

Английский учёный Кельвин предложил переместить начало температурной шкалы влево на 273 0 и назвать эту точку абсолютным нулём температуры. Масштаб новой шкалы такой же, как и у шкалы Цельсия. Новая шкала называется шкалой Кельвина или абсолютной термодинамической шкалой. Единица измерения – кельвин.

Нулю градусов Цельсия соответствует 273 К. Температура по шкале Кельвина обозначается буквой Т.

T = t 0 C + 273

t 0 C = T – 273

Новая шкала оказалась более удобной для записи газовых законов.

Температу́ра - скалярная физическая величина, характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия.

В состав производных величин СИ, имеющих специальное название, входит температура Цельсия, измеряемая в градусах Цельсия. На практике часто применяют градусы Цельсия из-за исторической привязки к важным характеристикам воды - температуре таяния льда (0 °C) и температуре кипения (100 °C). Это удобно, так как большинство климатических процессов, процессов в живой природе и т. д. связаны с этим диапазоном. Изменение температуры на один градус Цельсия тождественно изменению температуры на один Кельвин. Поэтому после введения в 1967 г. нового определения Кельвина, температура кипения воды перестала играть роль неизменной реперной точки и, как показывают точные измерения, она уже не равна 100 °C, а близка к 99,975 °C

Абсолютная Температурная Шкала - Термодинамическая температурная шкала или Международная практическая температурная шкала, по которой температура отсчитывается от абсолютного нуля в градусах Кельвина (кельвинах)

Абсолютная температурная шкала была введена, в науку не только для придания газовым законам более удобной фермы. Она имеет глубокий физический смысл.
Абсолютная температурная шкала или шкала Кельвина или термодинамическая температурная шкала признана Международным комитетом мер и весов в качестве основной. Определение термодинамической температурной шкалы базируется на втором законе термодинамики и использует цикл Карно. Одним из важнейших свойств термодинамической шкалы является независимость ее от термометрического вещества.

Для определения градуса шкалы используется одна реперная точка - тройная точка воды, а нижней границей температурного промежутка является точка абсолютного нуля. Тройной точке воды присваивается температура 273 15 К точно. Кельвина равен / 273.16 части термодинамической температуры тройной точки воды.
Абсолютная температурная шкала имеет нулевую точку при - 273 (Г 273 О.
Абсолютной температурной шкалой называется шкала, в которой за начало отсчета принята точка абсолютного нуля температур. Величина кельвина однозначно определяется требованием, чтобы температура тройной точки воды (реперная температурная точка, при которой в равновесии существуют жидкая, твердая и газообразная фазы вещества) была равна 273 16 К. Тогда нормальным точкам плавления льда и кипения воды по абсолютной шкале соответствуют температуры 273 15 и 373 15 К, и температурный интервал в 1 К равен температурному интервалу в 1 С.
Абсолютной температурной шкалой называют температурную шкалу, которая определяется термодинамическим методом таким образом, что она не зависит от выбора термометрического вещества. Нулевая точка этой шкалы определяется как наинпзшая термодинамически возможная температура. Абсолютная шкала температуры, которая используется в теплофизике в настоящее время, была введена лордом Кельвином (Вильямом Томсоном) в 1848 г. и поэтому называется также шкалой Кельвина.
Существует также абсолютная температурная шкала, которая использует градус шкалы Фаренгейта.
Желательность установления абсолютной температурной шкалы, не зависящей от свойств какого-нибудь отдельного вещества, уже была указана в гл.
Шкалы Кельвина и Ренкина - абсолютные температурные шкалы, основанные на законах термодинамики и представлении об абсолютном пуле температуры.
Абсолютная термодинамическая температурная шкала тождественна эмпирической абсолютной температурной шкале.
В связи с этим были предложены две абсолютные температурные шкалы - Кельвина и Ренкина, отличающиеся величиной принятой в них единицы измерения температуры.
В начале этой статьи было отмечено, что абсолютная температурная шкала может быть установлена с помощью любого соотношения, основанного на втором законе термодинамики и связывающего температуру Т с другими параметрами состояния.
Кроме стоградусной шкалы в науке и технике применяется абсолютная температурная шкала.
На основании этих выводов создана температурная шкала, названная абсолютной температурной шкалой.

7. Внутренняя энергия.

Вну́тренняя эне́ргия тела (обозначается как E или U ) - это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

§ - химический потенциал

§ - количество частиц в системе

Характеризующая тепловое состояние тел.

В окружающем нас мире происходят различные явления, связанные с нагреванием и охлаждением тел. Их называют тепловыми явлениями . Так, при нагревании холодная вода сначала стано-вится теплой, а затем горячей; вынутая из пламени металлическая деталь постепенно охлаждает-ся и т. д. Степень нагретости тела, или его тепловое состояние, мы обозначаем словами «теплый», «холодный», «горячий», Для количественной оценки этого состояния и служит температура .

Температура — один из макроскопических параметров системы. В физике, тела, состоящие из очень большого числа атомов или молекул , называют макроскопическими . Размеры макроскопических тел во много раз превышают размеры атомов. Все окружающие тела — от стола или газа в воздушном шарике до песчинки — макроскопические тела.

Величины, характеризующие состояние макроскопических тел без учета их молекулярного строения, называют макроскопическими параметрами . К ним относятся объем , давление , темпе-ратура , концентрация частиц, масса , плотность , намагниченность и т. д. Температура — один из важнейших макроскопических параметров системы (газа, в частности).

Температура — характеристика теплового равновесия системы.

Известно, что для определения температуры среды следует поместить в эту среду термометр и подождать до тех нор, пока температура термометра не перестанет изменяться, приняв значе-ние, равное температуре окружающей среды. Другими словами, необходимо некоторое время для установления между средой и термометром теплового равновесия.

Тепловым , или термодинамическим , равновесием называют такое состояние, при котором все макроскопические параметры сколь угодно долго остаются неизменными. Это означает, что не меняются объем и давление в системе, не происходят фазовые превращения, не меняется температура.

Однако микроскопические процессы при тепловом равновесии не прекращаются: скорости молекул меняются, они перемещаются, сталкиваются.

Любое макроскопическое тело или группа макроскопических тел — термодинамическая система — может находиться в различных состояниях теплового равновесия. В каждом из этих состояний температура имеет свое вполне определенное значение. Другие величины могут иметь разные (но постоянные) значения. Например, давление сжатого газа в баллоне будет отличаться от давления в помещении и при температурном равновесии всей системы тел в этом помещении.

Температура характеризует состояние теплового равновесия макроскопической системы: во всех частях системы, находящихся в состоянии теплового равновесия, температура имеет одно и то же значение (это единственный макроскопический параметр, обладающий таким свойством).

Если два тела имеют одинаковую температуру, между ними не происходит теплообмен, если разную — теплообмен происходит, причем тепло передается от более нагретого тела к менее нагретому до полного выравнивания температур.

Измерение температуры основано на зависимости какой-либо физической величины (напри-мер, объема) от температуры. Эта зависимость и используется в температурной шкале термомет-ра — прибора, служащего для измерения температуры.

Действие термометра основано на тепловом расширении вещества. При нагревании столбик используемого в термометре вещества (например, ртути или спирта) увеличивается, при охлаждении — уменьшается. Использующиеся в быту термометры позволяют выразить температуру вещества в градусах Цельсия (°С) .

А. Цельсий (1701-1744) — шведский ученый, предложивший использовать стоградусную шкалу температур. В температурной шкале Цельсия за нуль (с середины XVIII в.) принимается температура тающего льда, а за 100 градусом — температура кипения воды при нормальном атмосферном давлении.

Поскольку различные жидкости расширяются с повышением температуры по-разному, то температурные шкалы в термометрах с разными жидкостями различны.

Поэтому в физике используют идеальную газовую шкалу температур , основанную на зависимости объема (при постоянном давлении) или давления (при постоянном объеме) газа от тем-пературы.

Школьных и вузовских учебниках можно встретить множество самых различных объяснений температуры. Температура определяется как величина, отличающая горячее от холодного, как степень нагретости тела, как характеристика состояния теплового равновесия, как величина, пропорциональная энергии, приходящейся на степень свободы частицы, и т.д. и т.п. Чаще всего температуру вещества определяют как меру средней энергии теплового движения частиц вещества, или как меру интенсивности теплового движения частиц. Небожитель физики – теоретик удивится: «А чего тут непонятного? Температура – это dQ / dS , где Q – теплота, а S – энтропия!» Такое изобилие определений у любого критически мыслящего человека вызывает подозрение, что общепринятого научного определения температуры в настоящее время в физике не существует.

Попытаемся найти простое и конкретное толкование этого понятия на уровне, доступном для выпускника средней школы. Представим себе такую картину. Выпал первый снег, и два брата на перемене в школе затеяли забаву , известную под названием «снежки». Посмотрим, какая энергия передается игрокам в ходе этого состязания. Для простоты полагаем, что все снаряды попадают в цель. Игра протекает с явным перевесом для старшего брата. У него и снежные шарики покрупнее, да и бросает он их с большей скоростью . Энергия всех брошенных им снежков , где N с – количество бросков, а - средняя кинетическая энергия одного шарика. Средняя энергия находится по обычной формуле:

здесь m - масса снежков, а v - их скорость.

Однако не вся затраченная старшим братом энергия будет передана его младшему партнеру. В самом деле, снежки попадают в цель под разными углами, поэтому некоторые из них, отразившись от человека, уносят часть первоначальной энергии. Правда, бывают и «удачно» брошенные шарики, результатом которых может быть синяк под глазом. В последнем случае вся кинетическая энергия снаряда передается обстреливаемому субъекту. Таким образом, мы приходим к выводу, что энергия снежков, переданная младшему брату, будет равна не E с , а
, где Θ с – усреднённое значение кинетической энергии, которое передается младшему партнеру при попадании в него одного снежного шарика . Понятно, что чем больше энергия, приходящаяся в среднем на один брошенный шарик, тем больше будет и средняя энергия Θ с , передаваемая мишени одним снарядом. В простейшем случае зависимость между ними может быть прямо пропорциональной: Θ с =a . Соответственно младший школьник затратил за всё состязание энергию
, но энергия, переданная старшему брату, будет меньше: она равна
, где N м – число бросков, а Θ м – усреднённая энергия одного снежка, поглощенная старшим братом.

Нечто подобное происходит при тепловом взаимодействии тел. Если привести в контакт два тела, то молекулы первого тела за небольшой промежуток времени передадут второму телу энергию в виде теплоты
, где Δ S 1 – количество соударений молекул первого тела со вторым телом, а Θ 1 – это средняя энергия, которую молекула первого тела передаёт за одно столкновение второму телу. За это же время молекулы второго тела потеряют энергию
. Здесь Δ S 2 – число элементарных актов взаимодействия (число ударов) молекул второго тела с первым телом, а Θ 2 - средняя энергия, которую молекула второго тела передаёт за один удар первому телу. Величина Θ в физике получила название температуры . Как показывает опыт, она связана со средней кинетической энергией молекул тел соотношением:

(2)

А теперь можно подвести итоги всех приведенных выше рассуждений. Какой же вывод мы должны сделать относительно физического содержания величины Θ ? Он, на наш взгляд, совершенно очевиден.

тела передаёт другому макроскопическому объекту за одно

соударение с этим объектом.

Как следует из формулы (2) температура – это энергетический параметр, значит, единицей измерения температуры в системе СИ является джоуль. Так, что строго говоря, Вы должны жаловаться примерно так: «Похоже, вчера я простудился, голова болит, и температура – аж 4,294·10 -21 Дж!» Не правда ли, непривычная единица измерения температуры, да и величина какая-то уж слишком малая? Но не забывайте, что речь идет об энергии, которая составляет часть от средней кинетической энергией всего-то одной молекулы!

На практике температуру измеряют в произвольно выбранных единицах : флорентах, кельвинах, градусах Цельсия, градусах Ранкина, градусах Фаренгейта и т.д. (Могу же я определить длину не в метрах, а в кабельтовых, саженях, шагах, вершках, футах и т.п. Помнится, в одном из мультфильмов длину удава считали даже в попугаях!)

Для измерения температуры необходимо использовать некоторый датчик, который следует привести в контакт с исследуемым предметом , Этот датчик мы будем называть термометрическим телом . Термометрическое тело должно обладать двумя свойствами. Во-первых, это оно должно быть значительно меньше исследуемого объекта (правильней сказать, теплоемкость термометрического тела должна быть много меньше теплоемкости исследуемого предмета). Вы никогда не пробовали измерить температуру, скажем, комара с помощью обычного медицинского градусника? А Вы попробуйте! Что, ничего не получается? Все дело в том, что в процессе теплообмена насекомое не сможет изменить энергетическое состояние градусника, так как суммарная энергия молекул комара ничтожно мала по сравнению с энергией молекул градусника .

Ну, ладно, возьму маленький предмет, к примеру, карандаш, и с его помощью попробую измерить свою температуру. Опять что-то не ладится... А причина неудачи заключается в том, что термометрическое тело должно обладать ещё одним обязательным свойством: при контакте с исследуемым объектом в термометрическом теле должны происходить изменения, которые можно зарегистрировать визуально, либо с помощью приборов.

Присмотритесь, как устроен обычный бытовой термометр. Его термометрическое тело - маленький сферический сосуд, соединенный с тонкой трубкой (капилляром). Сосуд заполняется жидкостью (чаще всего ртутью или подкрашенным спиртом). При контакте с горячим или холодным предметом жидкость изменяет свой объём, и соответственно изменяется высота столбика в капилляре. Но для того, чтобы зарегистрировать изменения высоты столбика жидкости необходимо к термометрическому телу приладить ещё и шкалу. Прибор, содержащий термометрическое тело и выбранную определенным образом шкалу, называется термометром . Наибольшее распространение в настоящее время получили термометры со шкалой Цельсия и шалой Кельвина.

Шкала Цельсия устанавливается по двум репéрным (опорным) точкам. Первым репером является тройная точка воды – такие физические условия, при которых три фазы воды (жидкость, газ, твердое тело) находятся в равновесии . Это значит, что масса жидкости, масса кристаллов воды и масса водяных паров остаются при этих условиях неизменными. В такой системе, конечно же, идут процессы испарения и конденсации, кристаллизации и плавления, но они уравновешивают друг друга. Если не нужна очень высокая точность измерения температуры (например, при изготовлении бытовых термометров), первую реперную точку получают, помещая термометрическое тело в тающий при атмосферном давлении снег или лёд. Второй реперной точкой является условия, при которых жидкая вода находится в равновесии со своим паром (проще сказать, точка кипения воды) при нормальном атмосферном давлении. На шкале термометра делаются отметки, соответствующие реперным точкам; интервал между ними делится на сто частей. Одно деление выбранной таким образом шкалы называется градусом Цельсия (˚C). Тройная точка воды принимается за 0 градусов шкалы Цельсия.

Шкала Цельсия получила наибольшее практическое применение в мире; к сожалению, она имеет ряд существенных недостатков. Температура по этой шкале может принимать отрицательные значения, между тем кинетическая энергия и соответственно температура могут быть только положительными. Кроме того, показания термометров со шкалой Цельсия (за исключением реперных точек) зависят от выбора термометрического тела.

Шкала Кельвина лишена недостатков шкалы Цельсия. В качестве рабочего вещества в термометрах со шкалой Кельвина должен использоваться идеальный газ. Шкала Кельвина также устанавливается по двум реперным точкам. Первой реперной точкой являются такие физические условия, при которых прекращается тепловое движение молекул идеального газа. Эта точка принимается в шкале Кельвина за 0. Второй реперной точкой является тройная точка воды. Интервал между реперными точками разделен на 273,15 части. Одно деление выбранной таким образом шкалы называют кельвином (К). Число делений 273,15 выбрано по тем соображениям, чтобы цена деления шкалы Кельвина совпадала с ценой деления шкалы Цельсия, тогда изменение температуры по шкале Кельвина совпадает с изменением температуры по шкале Цельсия; тем самым облегчается переход от показаний одной шкалы к другой. Температура по шкале Кельвина обозначается обычно буквой Т . Связь между температурами t в шкале Цельсия и температурой Т , измеренной в кельвинах, устанавливается соотношениями

и
.

Для перехода от температуры Т , измеренной в К, к температуре Θ в джоулях служит постоянная Больцмана k =1.38·10 -23 Дж/К, она показывает, сколько джоулей приходится на 1 К:

Θ = kT .

Некоторые умники пытаются найти какой-то тайный смысл в постоянной Больцмана; между тем k – самый заурядный коэффициент для пересчёта температуры из кельвинов в джоули.

Обратим внимание читателя на три специфические особенности температуры. Во-первых, она является усреднённым (статистическим) параметром ансамбля частиц. Представьте себе, что вы решили найти средний возраст людей на Земле. Для этого заходим в детский садик , суммируем возраст всех ребятишек и делим эту сумму на число детей. Оказывается, что средний возраст людей на Земле – 3.5 года! Вроде считали-то правильно, а результат получили нелепый. А всё дело в том, что в статистике надо оперировать громадным количеством объектов или событий. Чем выше их количество (в идеале оно должно быть бесконечно большим), тем точней будет значение среднестатистического параметра. Потому понятие температуры применимо только к телам, содержащим громадное количество частиц. Когда журналист в погоне за сенсацией сообщает, что температура частиц, падающих на космический корабль, равна нескольким миллионам градусов, родственникам космонавтов не надо падать в обморок: с кораблем ничего страшного не происходит: просто малограмотный работник пера выдает энергию небольшого количества космических частиц за температуру. А вот если корабль, направляясь на Марс, сбился бы с курса и приблизился бы к Солнцу, тогда – беда: число частиц, бомбардирующий корабль громадное, а температура солнечной короны – 1,5 миллиона градусов.

Во-вторых, температура характеризует тепловое, т.е. неупорядочное движение частиц. В электронном осциллографе картинка на экране рисуется узким, сфокусированным в точку, потоком электронов. Эти электроны проходят некоторую одинаковую разность потенциалов и приобретают примерно одинаковую скорость. Для такого ансамбля частиц грамотный специалист указывают их кинетическую энергию (к примеру, 1500 электрон-вольт), которая, конечно же, не является температурой этих частиц.

Наконец, в-третьих, заметим, что передача теплоты от одного тела к другому может осуществляться не только за счет непосредственного столкновения частиц этих тел, но и за счет поглощения энергии в виде квантов электромагнитного излучения (этот процесс происходит, когда Вы загораете на пляже). Поэтому более общее и точное определение температуры следует сформулировать так:

Температура тела (вещества, системы) – физическая величина, численно равная усреднённой энергии, которую молекула этого

тела передаёт другому макроскопическому объекту за один

элементарный акт взаимодействия с этим объектом .

В заключение, вернёмся к определениям, о которых шла речь в начале этой статьи. Из формулы (2) следует, что если известна температура вещества, то можно однозначно определить среднюю энергию частиц вещества. Таким образом, температура действительно является мерой средней энергии теплового движения молекул или атомов (заметим, кстати, что среднюю энергию частиц определить непосредственно в эксперименте невозможно). С другой стороны кинетическая энергия пропорциональна квадрату скорости; значит, чем больше температура, тем выше скорости молекул, тем интенсивнее их движение. Следовательно, температура является мерилом интенсивности теплового движения частиц. Определения эти, безусловно, приемлемые, но носят они уж слишком общий, чисто качественный характер.

Существует несколько различных единиц измерения температуры.

Наиболее известными являются следующие:

Градус Цельсия - применяется в Международной системе единиц (СИ) наряду с кельвином.

Градус Цельсия назван в честь шведского учёного Андерса Цельсия, предложившего в 1742 году новую шкалу для измерения температуры.

Первоначальное определение градуса Цельсия зависело от определения стандартного атмосферного давления, потому что и температура кипения воды и температура таяния льда зависят от давления. Это не очень удобно для стандартизации единицы измерения. Поэтому после принятия кельвина K, в качестве основной единицы измерения температуры, определение градуса Цельсия было пересмотрено.

Согласно современному определению, градус Цельсия равен одному кельвину K, а ноль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 °C. В итоге, шкалы Цельсия и Кельвина сдвинуты на 273,15:

В 1665 году голландский физик Христиан Гюйгенс вместе с английским физиком Робертом Гуком впервые предложили использовать в качестве отсчетных точек температурной шкалы точки таяния льда и кипения воды.

В 1742 году шведский астроном, геолог и метеоролог Андерс Цельсий (1701-1744) на основе этой идеи разработал новую температурную шкалу. Первоначально в ней 0° (нулём) была точка кипения воды, а 100° - температура замерзания воды (точка плавления льда). Позже, уже после смерти Цельсия, его современники и соотечественники ботаник Карл Линней и астроном Мортен Штремер использовали эту шкалу в перевёрнутом виде (за 0° стали принимать температуру таяния льда, а за 100° - кипения воды). В таком виде шкала и используется до нашего времени.

По одним сведениям, Цельсий сам перевернул свою шкалу по совету Штремера. По другим сведениям, шкалу перевернул Карл Линней в 1745 году. А по третьим - шкалу перевернул преемник Цельсия Мортен Штремер, и в XVIII веке такой термометр был широко распространён под названием «шведский термометр», а в самой Швеции - под именем Штремера, но известнейший шведский химик Йёнс Якоб Берце́лиус в своем труде «Руководство по химии» назвал шкалу «Цельсиевой» и с тех пор стоградусная шкала стала носить имя Андерса Цельсия.

Градус Фаренгейта.

Назван в честь немецкого учёного Габриеля Фаренгейта, предложившего в 1724 году шкалу для измерения температуры.

На шкале Фаренгейта точка таяния льда равна +32 °F, а точка кипения воды +212 °F (при нормальном атмосферном давлении). При этом один градус Фаренгейта равен 1/180 разности этих температур. Диапазон 0…+100 °F по шкале Фаренгейта примерно соответствует диапазону −18…+38 °C по шкале Цельсия. Ноль на этой шкале определяется по температуре замерзания смеси воды, соли и нашатыря (1:1:1), а за 96 °F принята нормальная температура человеческого тела.

Кельвин (до 1968 года градус Кельвина) - единица термодинамической температуры в Международной системе единиц (СИ), одна из семи основных единиц СИ. Предложена в 1848 году. 1 кельвин равен 1/273,16 части термодинамической температуры тройной точки воды. Начало шкалы (0 К) совпадает с абсолютным нулём.

Пересчёт в градусы Цельсия: °С = K−273,15 (температура тройной точки воды - 0,01 °C).

Единица названа в честь английского физика Уильяма Томсона, которому было пожаловано звание лорд Кельвин Ларгский из Айршира. В свою очередь, это звание пошло от реки Кельвин (River Kelvin), протекающей через территорию университета в Глазго.

Кельвин

Градус Цельсия

Градус Фаренгейта

Абсолютный ноль

Температура кипения жидкого азота

Сублимация (переход из твёрдого состояния в газообразное) сухого льда

Точка пересечения шкал Цельсия и Фаренгейта

Температура плавления льда

Тройная точка воды

Нормальная температура человеческого тела

Температура кипения воды при давлении в 1 атмосферу (101,325 кПа)

Градус Реомюра - единица измерения температуры, в которой температура замерзания и кипения воды приняты за 0 и 80 градусов, соответственно. Предложен в 1730 году Р. А. Реомюром. Шкала Реомюра практически вышла из употребления.

Градус Рёмера - неиспользуемая ныне единица температуры.

Температурная шкала Рёмера была создана в 1701 году датским астрономом Оле Кристенсеном Рёмером. Она стала прообразом шкалы Фаренгейта, который посещал Рёмера в 1708 году.

За ноль градусов берётся температура замерзания солёной воды. Вторая реперная точка - температура человеческого тела (30 градусов по измерениям Рёмера, то есть 42 °C). Тогда температура замерзания пресной воды получается как 7,5 градусов (1/8 шкалы), а температура кипения воды - 60 градусов. Таким образом, шкала Рёмера - 60-градусная. Такой выбор, по-видимому, объясняется тем, что Рёмер прежде всего астроном, а число 60 было краеугольным камнем астрономии со времён Вавилона.

Градус Ранкина – единица температуры в абсолютной температурной шкале, названа по имени шотландского физика Уильяма Ранкина (1820-1872). Используется в англоязычных странах для инженерных термодинамических расчётов.

Шкала Ранкина начинается при температуре абсолютного нуля, точка замерзания воды соответствует 491,67°Ra, точка кипения воды 671,67°Ra. Число градусов между точками замерзания и кипения воды по шкале Фаренгейта и Ранкина одинаково и равно 180.

Соотношение между кельвином и градусом Ранкина: 1 K = 1,8 °Ra, градусы Фаренгейта переводятся в градусы Ранкина по формуле °Ra = °F + 459,67.

Градус Делиля - ныне неупотребляемая единица измерения температуры. Была изобретена французским астрономом Жозефом Николя Делилем (1688-1768). Шкала Делиля схожа с температурной шкалой Реомюра. Использовалась в России до XVIII века.

Петр Первый пригласил французского астронома Жозефа Николя Делиля в Россию, учреждая Академию Наук. В 1732 году Делиль создал термометр, использующий ртуть в качестве рабочей жидкости. В качестве нуля была выбрана температура кипения воды. За один градус было принято такое изменение температуры, которое приводило к уменьшению объема ртути на одну стотысячную.

Таким образом, температура таяния льда составила 2400 градусов. Однако позже столь дробная шкала показалась избыточной, и уже зимой 1738 года коллега Делиля по петербургской академии, медик Йозиас Вайтбрехт (1702-1747), уменьшил число ступеней от температуры кипения до температуры замерзания воды до 150.

«Перевернутость» этой шкалы (как и изначального варианта шкалы Цельсия) по сравнению с принятыми в настоящее время обычно объясняют чисто техническими трудностями, связанными с градуировкой термометров.

Шкала Делиля получила достаточно широкое распространение в России, и его термометры использовались около 100 лет. Этой шкалой пользовались многие российские академики, в том числе Михаил Ломоносов, который, однако «перевернул» её, расположив ноль в точке замерзания, а 150 градусов - в точке кипения воды.

Градус Гука - историческая единица температуры. Шкала Гука считается самой первой температурной шкалой с фиксированным нулём.

Прообразом для созданной Гуком шкалы стал попавший к нему в 1661 термометр из Флоренции. В изданной через год «Микрографии» Гука встречается описание разработанной им шкалы. Гук определил один градус как изменение объёма спирта на 1/500, т. е. один градус Гука равен примерно 2,4 °C.

В 1663 году члены Королевского общества согласились использовать термометр Гука в качестве стандартного и сравнивать с ним показания других термометров. Голландский физик Христиан Гюйгенс в 1665 г. вместе с Гуком предложил использовать температуры таяния льда и кипения воды для создания шкалы температур. Это была первая шкала с фиксированным нулём и отрицательными значениями.

Градус Дальтона – историческая единица температуры. Он не имеет определённого значения (в единицах традиционных температурных шкал, таких как шкала Кельвина, Цельсия или Фаренгейта), поскольку шкала Дальтона - логарифмическая.

Шкала Дальтона была разработана Джоном Дальтоном для проведения измерений при высоких температурах, поскольку обычные термометры с равномерной шкалой давали ошибку из-за неравномерного расширения термометрической жидкости.

Нуль шкалы Дальтона соответствует нулю Цельсия. Отличительной чертой шкалы Дальтона является то, что в ней абсолютный нуль равен − ∞°Da, т. е. он является недостижимой величиной (что на самом деле так, согласно теореме Нернста).

Градус Ньютона - не используемая ныне единица температуры.

Температурная шкала Ньютона была разработана Исааком Ньютоном в 1701 году для проведения теплофизических исследований и стала, вероятно, прообразом шкалы Цельсия.

В качестве термометрической жидкости Ньютон использовал льняное масло. За ноль градусов Ньютон взял температуру замерзания пресной воды, а температуру человеческого тела он обозначил как 12 градусов. Таким образом, температура кипения воды стала равна 33 градусам.

Лейденский градус - историческая единица температуры, использовавшаяся в начале XX века для измерения криогенных температур ниже −183 °C.

Эта шкала происходит из Лейдена, где с 1897 года находилась лаборатория Камерлинг-Оннеса. В 1957 году Х. ван Дийк и М. Дюро ввели шкалу L55.

За ноль градусов бралась температура кипения стандартного жидкого водорода (−253 °C), состоящего на 75 % из ортоводорода и на 25 % из параводорода. Вторая реперная точка - температура кипения жидкого кислорода (−193 °C).

Планковская температура , названная в честь немецкого ученого-физика Макса Планка, единица температуры, обозначаемая T P , в Планковской системе единиц. Это одна из планковских единиц, которая представляет фундаментальный предел в квантовой механике. Современная физическая теория не способна описать что-либо более горячее из-за отсутствия в ней разработанной квантовой теории гравитации. Выше планковской температуры энергия частиц становится настолько большой, что гравитационные силы между ними становятся сравнимы с остальными фундаментальными взаимодействиями. Это температура Вселенной в первый момент (Планковское время) Большого взрыва в соответствии с текущими представлениями космологии.