Хлорорганические соединения (XOC). Хлорорганические соединения (ХОС) Хлорорганические соединения в воде

Инсектоакарициды

Организм членистоногих является специфической средой, где возбудители болезней, кроме механического присутствия, могут проходить фазы своего развития, накапливая биомассу, готовясь к смене хозяина. С их помощью передаются возбудители бактериальных инфекций, таких как туляремия, бруцеллез, листериоз, лептоспироз, протозойных и гельминтозных.

Инсектоакарициды - препараты химического или биологического происхождения, предназначенные для борьбы с вредными насекомыми и клещами.

По происхождению их делят на: фосфорорганические соединения, хлорорганические соединения, карбаматы, синтетические пиретроиды и препараты разных групп.

Из общего объема расходуемых инсектоакарицидов на долю ФОС приходится 43 %, ХОС - 17 %, карбаматов -25 %, других 15%.

Разные членистоногие, а также промежуточные формы их развития неодинаково чувствительны к фармакологическим средствам. Поэтому помимо общего понятия инсектицидного влияния различают действия: овоцидное - уничтожение яиц насекомых, лярвицидное - уничтожение личинок и гусениц, акарицидное - уничтожение клещей, пестицидное - широкий спектр действия. Вещества, отпугивающие насекомых от животных, называются репеллентами, а средства, привлекающие насекомых - аттрактантами.

По путям проникновения в организм насекомых их делят на контактные, пооникающие в гемолимфу через кутикулу насекомого; кишечные, попадающие в организм насекомого через пищеварительный аппарат, и фумигантные, проникающие через дыхательный аппарат. В последние годы уделяется внимание инсектицидам системного действия. Введенные в организм животного энтерально или парентерально в безвредных для него дозах, инсектициды системного действия губят личинок оводов, мигрирующих в тканях животного.

Требования, предъявляемые к инсектоакарицидам:

1. Обладать специфическим действием на членистоногих на всех стадиях развития, причем при использовании минимальных доз;

2. Обладать персистирующей способностью;

3. Сохранять эффективность при различных метеоусловиях;



4. Экономичность;

5. Безопасность для обслуживающего персонала;

6. Не должны обладать отдаленным эффектом действия.

Если несколько лет назад основным показателем, лимитирующим их применение, были их токсичность и стойкость в окружающей среде, то сегодня на первое место выходит отдаленный эффект действия: мутагенное, тератогенное, канцерогенное и т. д.

Механизм действия инсектицидов различный. Одни из них нарушают хитиновый покров насекомого, другие изменяют функцию органов дыхания или пищеварения. Но наиболее эффективно нарушение отдельных звеньев метаболизма после резорбции препаратов.

Инсектициды применяют в природных условиях в местах скопления и выплодки насекомых, в помещениях и на теле животных.

Применяют их путем опрыскивания, опыливания, нанесения на поверхность тела с помощью пуронов (поливание животных вдоль позвоночника композициями из органических растворителей и пестицидов), купания животных и аэрозольной обработки.

Используются инсектоакарициды в виде растворов, эмульсий, лосьонов, суспензий, порошков (дустов), аэрозолей, пуронов, инсектицидных мазей, инсектицидных карандашей, инсектицидного мыла, зоошампуней, пленок, бирок, ушных номеров, ошейников, дымовых шашек.

Тип среды обитания членистоногих и фаза онтогенеза определяют выбор средств борьбы:

* при борьбе с саркаптоидными клещами - купка и опрыскивание животных;

* с гнусом и слепнями - шашки, таблетки, шнуры, аэрозольные препараты;

* со вшами и блохами - инсектицидные порошки, шампуни, различные мыла и т. д.

В связи с запрещением использования стойких и высокотоксичных химических соединений ощутимо снизилось санитарно-токсикологическое значение этих пестицидов, однако их опасность для живых объектов природы еще достаточно высока, что пагубно отражается на внешней среде.

Обращение с ними требует четкости, пунктуальности, правильности приготовления рабочих растворов, соблюдение сроков и доз их применения. Особое внимание должно обращаться на соблюдение условий личной гигиены и соблюдение этих требований всеми работниками животноводства. Врач должен хорошо знать токсичность инсектицидов для животных и в случае появления самых первых признаков отравления быстро применять соответствующее противоядие.

Фосфорорганические соединения.

Соединения этой группы представляют собой сложные эфиры ряда кислот: фосфорной, тиофосфорной, дитиофосфорной.

Преимущества ФОС - широкий спектр инсектицидного действия, малая стойкость в объектах внешней Среды.

Две группы: контактного и системного действия.

К препаратам контактного действия относится хлорофос, трихлорметафос -3, карбофос, байтекс, метафос, фузалон, гардона, неоцидол и др.

К препаратам системного действия - антио, амифос, фосфамид, фосфолидон и др.

Некоторые препараты - фосфамид, антио, обладают контактным и системным действием.

Под влиянием физических и химических факторов внешней среды ФОС подвергаются изомеризации, трансалкилированию, в ппроцессе которых образуются более активные и токсичные соединения. В организме они подвергаются окислительной десульфурации (отщепление серы, связанной с атомом фосфора и замена ее кислородом), возможно образование конъюгатов с глюкуроновой и серной кислотами, глутамином. ФОС выделяются в еизменном виде через дыхательные пуити (20 - 25 %), с мочой (30 %).

Механизм действия ФОС на насекомых и млекопитающих одинаков и заключается в ингибировании холинэстеразы, что приводит к избыточному накоплению ацетилхолина и нарушению передачи нервных импульсов, что выражается кратковременным возбуждением, а затем параличом нервной системы.

У насекомых наблюдается тремор тела (главным образом конечностей), расстройство координации движения с потерей способности летать, паралич, смерть.

Хлорофос (негувон, диптерекс) Сhlorophosum.

Белый кристаллический порошок, хорошо растворимый в воде и большинстве органических растворителей. Губительно действует на насекомых и гельминтов. Применяют для обработки животных против летающих насекомых. Коров обрабатывают после дойки. Обладает высокой системной активностью. Он убивает личинок оводов, находящихся в тканях животного, не только при внутреннем, но и при наружном применении.

Гиподермин – хлорофос Hypodermini- chlorophosum.

11,6 % спиртово-масляный раствор хлорофоса.

Прозрачная желтоватого цвета жидкость с легким ароматическим запахом. Применяют против личинок подкожного овода методом полива крупного рогатого скота в дозе 16 мл - животным массой до 200 кг и 24 мл - при большей массе.

Диоксафос Dioxaphosum.

16 % раствор хлорофоса в органическом растворителе. Доза 12 мл и 16 мл (аналогично гиподерминхлорофосу).

ДДВФ (дихлорфос дихлофос) DDVF.

Прозрачная бесцветная или слабо-желтого цвета жидкост, плохо растворимая в воде.

Оказывает избирательное действие на насекомых, клещей, гельминтов.

Карбофос Carbophosum.

Бесцветная жидкость. Используют в виде 1 % водной эмульсии и 4 % дуста, шампунь “Педилин” - для борьбы с яйцами и личинками вшей, аэрозоль “Карбозоль”.

Диазинон Diazinonum (неоцидол, базудин).

Бесцветная маслянистая жидкость, плохо растворимая в воде.

Выпускают в виде 25 - 60 % концентрата эмульсии, 40 % смачивающегося порошка, 5 % дуста. Применяют также дурсбан, сульфидофос, фоксим, трихлорметафос, фталофос и др.

Хлорорганические соединения.

Хлорорганические соединения - группа препаратов, используемая в сельском хозяйстве с различными целями. В ветпрактике наиболее часто применяют хлорпроизводные циклических углеводородов.

Характерная их особенность - высокая персистентность, т. е. устойчивость к воздействию факторов внешней Среды. Это липотропные вещества. В основном это порошки, реже жидкости, плохо растворимые в воде, хорошо в органических растворителях и маслах.

Механизм инсектоакарицидного действия: легко проникают в гемолимфу, клетки тканей, подвергаются дехлорированию с образованием свободнорадикальных и перекисных соединений, разрушающих клеточные структуры. Также как и ФОС блокируют ацетилхолинэстеразу.

До недавнего времени применяли ГХЦГ. С 1989 года его применение запрещено.

Аурикан Auricanum. Ушные капли (Венгрия).

Слабоокрашенная жидкость с небольшой опалесценцией.

Благодаря многокомпонентному составу эффективен при заболевании ушей у собак и кошек (микробный отит, отодектоз).

Закапывают по 10 капель в каждое ухо в течение 7 дней.

Состав: преднизолона натрия - 0,03 г; гексамидина изотионата - 0,05 г; тетракаина гидрохлорида - 0,2 г; линдана (ГХЦГ) - 0,1 г; ксилена 0,5 г; глицерина - 2 г; дистиллированной воды до 100 мл.

Фольбекс (акар - 338). В чистом виде - светло-желтые кристаллы. Хорошо растворим в спирте. Используют для борьбы с варроозом пчел.

Карбаматы.

По биологической активности очень близки к ФОС, ингибируют холинэстеразу.

Положительным свойством их является относительно быстрая разлагаемость во внешней среде.

В ветпрактике нашли применение:

Байгон (пропоскур, унден, апрокарб).

Белое кристаллическое вещество, хорошо растворимое в органических растворителях.

Эффективное средство борьбы с комарами, мухами, тараканами и другими насекомыми, а так же клещами. Против комаров и мух применяется в виде 2 % водной эмульсии с нормой расхода 100 мл/ м 2 .

Форма выпуска - 80 % и 20 % концентрат эмульсии, 1 % дуст и другие формы (фирма “Байер”).

Больфо-пудра (1 % пропоскура) - животных опудривают 2 - 3 раза в неделю;

Больфо-шампунь - купка в течение 5 - 10 минут;

Больфо-ошейник;

Больфо-спрей (балончики) и др.

Севин Sevinum.

Белый порошок нерастворимый в воде, выпускают в виде 50 - 80 % смачивающегося порошка или 7,5 % дуста.

Применяется в виде 0,5 - 1 % суспензии, в виде 2 % и 7,5 % дустов.

МИНИСТЕРСТВО ЖИЛИЩНО-КОММУНАЛЬНОГО ХОЗЯЙСТВА РСФСР

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ
АКАДЕМИЯ КОММУНАЛЬНОГО ХОЗЯЙСТВА им. К.Д. ПАМФИЛОВА

РУКОВОДСТВО
НА ТЕХНОЛОГИЮ ПОДГОТОВКИ ПИТЬЕВОЙ ВОДЫ,
ОБЕСПЕЧИВАЮЩУЮ
ВЫПОЛНЕНИЕ ГИГИЕНИЧЕСКИХ ТРЕБОВАНИЙ
В ОТНОШЕНИИ ХЛОРОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Отдел научно-технической информации АКХ

Москва 1989

Рассмотрены гигиенические аспекты и причины загрязнения питьевых вод токсичными летучими хлорорганическими соединениями. Представлены технологические приемы очистки и обеззараживания воды, предотвращающие образование хлорорганических соединений, и методы их удаления. Изложена методика выбора того или иного приема в зависимости от качества исходной воды и технологии ее обработки.

Руководство разработано НИИ коммунального водоснабжения и очистки воды АКХ им. К.Д. Памфилова (канд. техн. наук И.И. Демин, В.З. Мельцер, Л.П. Алексеева, Л.Н. Паскуцкая, канд. хим. наук Я.Л. Хромченко) и предназначено для специалистов научно-исследовательских, проектных и производственных организаций, работающих в области очистки природных вод, а также для работников СЭС, контролирующих гигиенические показатели качества питьевой воды.

Руководство составлено на основе исследований, проведенных в полупроизводственных и производственных условиях с участием ЛНИИ АКХ, НИКТИГХ, УкркоммунНИИпроект, НИИОКГ им. А.Н. Сысина и 1 ММИ им. И.М. Сеченова.

По решению ученого совета НИИ КВОВ АКХ первоначальное название работы «Рекомендации по совершенствованию технологии очистки и обеззараживания воды с целью уменьшения галогенорганических соединений в питьевой воде» заменено на настоящее.

I. ОБЩИЕ ПОЛОЖЕНИЯ

В практике подготовки питьевой воды одним из основных приемов обработки, обеспечивающим ее надежное обеззараживание, а также позволяющим поддерживать санитарное состояние очистных сооружений, является хлорирование.

Исследования последних лет показали, что в воде могут присутствовать токсичные летучие галогенорганические соединения (ЛГС). В основном это соединения, относящиеся к группе тригалогенметанов (ТГМ): хлороформ, дихлорбромметан, дибромхлорметан, бромоформ и др., обладающие канцерогенной и мутагенной активностью.

Гигиеническими исследованиями, проведенными за рубежом и в нашей стране, выявлена взаимосвязь между количеством онкологических заболеваний и употреблением населением хлорированной воды, содержащей галогенорганические соединения.

В ряде стран установлены ПДК суммы ТГМ в питьевой воде (мкг/л): в США и Японии - 100, в ФРГ и ВНР - 50, в Швеции - 25.

По результатам исследований, проведенных 1 Московским медицинским институтом им. И.М. Сеченова, НИИ общей и коммунальной гигиены им. А.Н. Сысина и Институтом экспериментальной и клинической онкологии АМН СССР, были выявлены 6 высокоприоритетных летучих хлорорганических соединений (ЛХС), и Минздрав СССР утвердил ориентировочно-безопасные уровни их воздействия на человека (ОБУЗ) с учетом бластомогенной активности (способность веществ вызывать различные виды онкологических заболеваний) (таблица).

Таблица

Высокоприоритетные ЛХС и их допустимые концентрации в питьевой воде, мг/л

Соединение

ОБУВ по токсикологическому признаку вредности

ОБУВ с учетом бластомогенной активности

Хлороформ

0,06

Четыреххлористый углерод

0,006

1,2-дихлорэтан

0,02

1,1-дихлорэтилен

0,0006

Трихлорэтилен

0,06

Тетрахлорэтилен

0,02

В руководстве рассмотрены причины загрязнения питьевых вод летучими хлорорганическими загрязнениями и влияние качества исходной воды на их конечную концентрацию. Изложены технологические приемы очистки и обеззараживания воды, позволяющие уменьшить концентрацию ЛХС до допустимых пределов. Приведена методика выбора предлагаемых приемов в зависимости от качества исходной воды и технологии ее обработки.

Технологические приемы, представленные в руководстве, разработаны на основе специально проведенных исследований в лабораторных и полупроизводственных условиях и испытаны на действующих водопроводных станциях.

Известны два возможных источника попадания ЛХС в питьевую воду:

1) в результате загрязнения источников водоснабжения промышленными сточными водами, содержащими ЛХС. При этом поверхностные источники водоснабжения, как правило, содержат небольшие количества ЛХС, так как в открытых водоемах активно идут процессы самоочищения; кроме того, ЛХС удаляются из воды путем поверхностной аэрации. Содержание ЛХС в подземных водоисточниках может достигать значительных величин, и концентрация их возрастает при поступлении новых порций загрязнений;

2) образование ЛХС в процессе водоподготовки, в результате взаимодействия хлора с органическими веществами, присутствующими в исходной воде. К органическим веществам, ответственным за образование ЛХС, относятся оксосоединения, имеющие одну или несколько карбонильных групп, находящихся в орто- пара- положении, а также вещества, способные к образованию карбонильных соединений при изомеризации, окислении или гидролизе. К таким веществам относятся прежде всего гумусовые и нефтепродукты. Кроме того, на концентрацию образующихся ЛХС существенное влияние оказывает содержание в исходной воде планктона.

Основные концентрации ЛХС образуются на этапе первичного хлорирования воды при введении хлора в неочищенную воду. В хлорированной воде обнаружено свыше 20 различных ЛХС. Наиболее часто отмечается присутствие ТГМ и четыреххлористого углерода. При этом количество хлороформа обычно на 1-3 порядка превышает содержание других ЛХС, и в большинстве случаев концентрация их в питьевой воде выше установленного норматива в 2-8 раз.

Процесс образования ЛХС при хлорировании воды сложный и продолжительный во времени. Существенное влияние на него оказывает содержание в исходной воде органических загрязнений, время контакта воды с хлором, доза хлора и рН воды (рис. ).

Многочисленными исследованиями установлено, что летучие хлорорганические соединения, присутствующие в исходной воде и образовавшиеся при ее хлорировании, на сооружениях традиционного типа не задерживаются. Максимальная их концентрация отмечается в резервуаре чистой воды.

В настоящее время на действующих водопроводных станциях предварительное хлорирование часто осуществляется весьма высокими дозами хлора с целью борьбы с планктоном, снижения цветности воды, интенсификации процессов коагуляции и т.п. При этом хлор иногда вводится в отдаленных от водоочистных сооружений точках (ковши, каналы и т.д.). На многих водопроводных станциях хлор вводится только на этапе предварительного хлорирования, доза хлора в этом случае достигает 15-20 мг/л. Такие режимы хлорирования создают наиболее благоприятные условия для образования ЛХС вследствие длительного контакта присутствующих в воде органических веществ с высокими концентрациями хлора.

Для предотвращения образования ЛХС в процессе водоподготовки необходимо изменить режим предварительного хлорирования воды, при этом концентрацию ЛХС в питьевой воде можно уменьшить на 15-30 % в зависимости от применяемого приема.

Так, при выборе дозы хлора следует руководствоваться только соображениями дезинфекции воды. Доза предварительного хлорирования не должна превышать 1-2 мг/л.

При высокой хлорпоглощаемости воды следует проводить дробное хлорирование, в этом случае расчетная доза хлора вводится не сразу, а небольшими порциями (частично перед сооружениями I ступени очистки воды, частично перед фильтрами).

Дробное хлорирование целесообразно применять также при транспортировании неочищенной воды на значительные расстояния. Разовая доза хлора при дробном хлорировании не должна превышать 1-1,5 мг/л.

С целью сокращения времени контакта неочищенной воды с хлором предварительное обеззараживание воды следует проводить непосредственно на очистных сооружениях. Для этого хлор подается в воду после барабанных сеток или микрофильтров на входы воды в смеситель или после воздухоотделительной камеры.

Для оперативного регулирования процесса хлорирования воды и эффективного использования хлора необходимо иметь коммуникации для транспортирования хлора в водозаборные сооружения, в водоприемные колодцы 1 подъема, в смесители, трубопроводы осветленной и фильтрованной воды, в резервуары чистой воды.

Кроме того, для профилактики биологического и бактериального обрастания сооружений (периодическая промывка отстойников и фильтров хлорированной водой) можно применять передвижные, хлораторные установки.

Чтобы исключить возможность образования хлорорганических соединений при приготовлении хлорной воды, в хлораторных должна использоваться только очищенная вода из хозяйственно-питьевого водопровода.

3. Очистка воды от растворенных органических веществ до хлорирования

Органические вещества, присутствующие в исходной воде, являются основными источниками образования ЛХС в процессе водоподготовки. Предварительная очистка воды от растворенных и коллоидных органических загрязнений до хлорирования, уменьшает концентрацию ЛХС в питьевой воде на 10-80 % в зависимости от глубины их удаления.

Предварительная очистка воды коагуляцией . Частичная очистка воды от органических загрязнений коагулированием и осветлением (хлор при этом вводится в обрабатываемую воду после I ступени очистки воды) позволяет уменьшить концентрацию ЛХС в питьевой воде на 25-30 %.

При проведении полной предварительной очистки воды, включающей коагулирование, осветление и фильтрование, концентрация органических веществ уменьшается на 40-60 %, соответственно, уменьшается концентрация ЛХС, образующихся при последующем хлорировании.

С целью максимального удаления органических веществ необходимо интенсифицировать процессы очистки воды (применять флокулянты, тонкослойные модули в отстойных сооружениях и осветителях со взвешенным осадком, новые фильтрующие материалы и др.).

При использовании технологии очистки воды без предварительного хлорирования следует обращать внимание на выполнение требований ГОСТ 2874-82 «Вода питьевая. Гигиенические требования и контроль за качеством» в отношении времени контакта воды с хлором при ее обеззараживании, а также на санитарное состояние сооружений, проводя периоди ческую дезинфекцию в соответствии с работами [, ].

Необходимо также регулярно удалять осадок из сооружений I ступени очистки воды.

Сорбционная очистка воды . Применение порошкообразного активированного угля (ПАУ) для очистки воды уменьшает образование ЛХС на 10-40 %. Эффективность удаления органических веществ из воды зависит от природы органических соединений и в основном от дозы ПАУ, которая может изменяться в широких пределах (от 3 до 20 мг/л и более).

Обрабатывать воду ПАУ следует до ее хлорирования и в соответствии с рекомендациями СНиП 2.04.02-84 .

Применение сорбционных фильтров с загрузкой из гранулированных активированных углей без предварительного хлорирования воды позволяет удалить из воды до 90 % растворенных органических веществ и соответственно уменьшить образование ЛХС в процессе водоподготовки. С целью повышения эффективности сорбционных фильтров по отношению к органическим веществам их следует располагать в технологической схеме очистки воды после этапов коагуляционной обработки и осветления воды, т.е. после фильтров или контактных осветлителей.

Предварительная обработка воды окислителями (озон, перманганат калия, ультрафиолетовое облучение и др.) увеличивает межрегенерационный период работы фильтров.

Характерной особенностью хлорорганических соединений является высокая персистентность, т.е. устойчивость к воздействию факторов внешней среды, они сохраняются в почве несколько лет, а в животноводческих помещениях - несколько месяцев. Так, ДДТ обнаруживали в почве через 8-12 лет после его применения, ГХЦГ - в течение 4-12 лет. Остатки линдана обнаруживали спустя четыре с половиной года. Эти соединения длительное время задерживаются в верхнем слое почвы и медленно мигрируют в ее глубину. XOC - липотропные вещества, они накапливаются в первую очередь в органах и тканях, богатых липидами, хорошо преодолевают плацентарный барьер. При алиментарном поступлении XOC хорошо всасываются слизистыми оболочками пищеварительного тракта с последующим образованием в организме животных метаболитов, токсичность которых неравнозначна. Метаболизм хлорпроизводных ациклических углеводов (гексахлорциклогексана и его аналогов, гамма-изомера ГХЦГ и др.) в организме животных протекает интенсивно. Поэтому мясо от обработанных этими препаратами животных рекомендовалось реализовать для питания людям не ранее чем через два месяца.
В организме животных и птиц XOC поступают при обработке кожных покровов (втирание, купание), через пищевой канал (с кормами, содержащими их остатки), а также в результате непосредственного введения их в желудок. Возможно общетоксическое действие при проникновении через неповрежденную кожу и дыхательные пути. Характерным и весьма отрицательным свойством XOC является способность к кумуляции. Повторное попадание их в организм различными путями в малых количествах способствует развитию хронического отравления, что представляет опасность для здоровья животных и людей.
Из организма XOC выделяются в основном с фекалиями, в меньшей степени с мочой. Способность XOC выделяться с молоком обуславливается наличием их в нем не только после обработки препаратами, но и поступлением XOC в организм с кормами или пищевыми продуктами.
ХОСы плохо растворимы в воде и хорошо - в органических растворителях и жирах. Большинство XOC относится к среднетоксическим соединениям. Это яды политропного действия с преимущественным поражением ЦНС и паренхиматозных органов, в частности печени. Наряду с этим имеет место нарушение функций эндокринной и сердечно-сосудистой систем, крови и почек.
Клиническая картина отравления XOC
При остром отравлении животных отмечается повышенная возбудимость, слюноотделение, нарушение координации движений и ритма дыхания, тремор, судороги тонического и клонического типов. Смерть наступает от паралича дыхательного центра.
Хроническое отравление животных характеризуется нарастающим ухудшением аппетита, потерей массы тела, вялостью, пугливостью, потускнением шерстных покровов, появлением рвоты, учащением дефекации и мочеиспускания. Далее атаксия, тремор, приступы клонико-тонических судорог, параличи, смерть от остановки дыхания.
При поступлении через дыхательные пути XOC вызывают раздражение конъюнктивы, слизистых оболочек носа, трахеи и бронхов.
Патоморфологические изменения при отравлении ХОС. При остром отравлении животных наблюдается резко выраженное полнокровие внутренних органов и головного мозга, мелкоочаговые и диффузные кровоизлияния в легких. При микроскопическом исследовании - разрыхление и отек стенок сосудов; в коре головного мозга - дистрофические изменения нервных клеток; в мышце сердца - единичные мелкоочаговые инфильтраты из клеток печени и почек. У животных, погибших в результате хронической интоксикации, отмечается застой крови в легких и органах брюшной полости. При микроскопическом исследовании - периваскулярный и перицеллюлярный отек с дистрофическими изменениями нервных клеток головного мозга, очаги кровоизлияний и дегенеративно-воспалительные изменения в легких, печени, почках: мутное набухание и жировая дистрофия клеток печени; паренхиматозная дистрофия эпителия извитых канальцев в почках, сопровождающаяся гиперемией и отеком; дистрофические изменения миокарда; очаговый отек легких, воспалительные процессы в слизистой и подслизистой оболочках желудка.
Политропное действие XOC проявляется в поражениях нервной системы, носящих характер диффузного процесса по типу токсического энцефаломиелополинефрита.
Первая помощь и лечение при отравлении XOС. Средства антидот-ной терапии отсутствуют, лечение ограничивается использованием симптоматических общеукрепляющих средств.
При возбуждении нервной системы рекомендованы барбитураты, но при угнетении дыхательного центра применение их противопоказано. При угрозе остановки дыхания вводят внутривенно лобелин. Следует избегать применения адреналина вследствие неблагоприятного влияния его на сердечную мышцу, сенсибилизированную хлорорганическими соединениями.
Для поддержания деятельности сердечно-сосудистой системы вводят кордиамин или раствор глюкозы со строфантином внутривенно. Раствор камфоры под кожу через каждые 0,5-1 час до выхода пострадавшего из коллапса.
При появлении судорог вводят внутримышечно сернокислую магнезию или хлоргидрат перорально или перректально.
При появлении резкого возбуждения ЦНС показано введение гексенала внутривенно или мединала внутримышечно. Препараты морфина противопоказаны.
При кислородной недостаточности эффективна оксигенотерапия. При отеке легких целесообразно кровопускание с последующим введением внутривенно 40% раствора глюкозы.
Лечение хронических интоксикаций XOC сводится к применению витаминотерапии (С, B1, B2, B12), введению глюкозы с аскорбиновой и никотиновой кислотами (внутривенно), биогенных стимуляторов (алоэ, плазмол, фибс и др.), применению липотропных средств и липокаина при наличии признаков поражения печени. В случаях токсической анемии назначают препараты железа. Явления геморрагического диатеза устраняют применением рутина и аскорбиновой кислоты.
В случаях аллергических явлений - применение десенсибилизирующей терапии (хлористый кальций, аскорбиновая кислота, димедрол). Лечебная диета заключается в повышенном употреблении липотропных (например, творог) и ограничении холестеринсодержащих продуктов, ограничение углеводов и белков. Из хлорпроизводных алициклических углеводородов - гамма-изомер ГХЦГ - линдан - долгие годы применялся в России и за рубежом как инсектоакарицид для животноводства и растениеводства. Это белый кристаллический порошок. Летуч. He разрушается сильными кислотами, устойчив к действию света и воды, взрывоопасен. Выпускали 90% технический препарат, 16% минерально-масляную эмульсию гамма-изомера ГХЦГ, шашки Г-17, 6-ную к.э. гексалина и 6% к.э. гексаталпа.
Все вышеназванные препараты, основой которых является гамма-изомер ГХЦГ, на основании приказа М3 России №138 от 02.03.89г. запрещены. Вместе с тем, в Россию для борьбы с эктопаразитами плотоядных завозится из Франции и Венгрии комплексный препарат, содержащий линдан, - аурикан. Этот препарат обладает акарицидным действием против возбудителя отодектоза собак и кошек.
Аурикан - ушные капли, композиционный препарат, состоящий из:
- Линдана - 0,1 г;
- Преднизолона натрия - 0,03 г;
- Гексамидина изотионата - 0,05 г;
- Тетракаина гидрохлорида - 0,2 г;
- Ксилена - 0,5 г;
- Глицерина - 2 г;
- Дистиллированной воды - 100 мл.
Линдан - гексахлорциклогексан, действует на имаго и яйца членистоногих, он нерастворим в воде, но растворим в спирте и маслах. Доза 20 мг/кг вызывает у собак признаки токсикоза, брадикардию, дистрофию печени, патологию почек и т.д. Используется гамма-изомер в концентрации 1%.
Преднизолон - кортикостероид, обеспечивающий противовоспалительный, антиаллергический эффект, улучшает углеводный, белковый и липидный обмен, способствует деградации коллагена, стимулирует эритропоэз, уменьшает абсорбцию и увеличивает выделение почками кальция.
Гексамидин - изотионат, обеспечивает антибактериальную и антигрибковую активность, его действие отмечается через 24 часа после накожного применения, низкотоксичен для теплокровных.
Тетракаина гидрохлорид - в зависимости от дозы может способствовать или предупреждать судороги, не является вязоконструктором. Низкотоксичен: ЛД50 при внутривенном введении для мышей составляет 7 мг/кг, для кроликов и собак 0,43 мг/кг.
Глицерин придает вязкость препарату.
По внешнему виду аурикан - слабоопалесцирующая жидкость, срок годности 3,5 года с момента изготовления.

Как известно, большая часть воды централизованного водоснабжения в России подвергается дезинфекции с применением хлора или веществ, содержащих хлор . Ввиду того, что свободный хлор относится к числу вредных для здоровья веществ, гигиенические номы (СанПиН - Санитарные Правила и Нормы) строго регламентирует содержание остаточного свободного хлора в питьевой воде централизованного водоснабжения. При этом СанПиН устанавливает не только верхнюю границу допустимого содержания свободного остаточного хлора, но и минимально-допустимую границу. Дело в том, что, что несмотря на обеззараживание на станции водоочистки, готовую "товарную" питьевую воду подстерегает немало опасностей по пути к крану потребителя. Например, свищ в стальной подземной магистрали, сквозь которые не только магистральная вода попадает наружу, но и загрязнения из почвы могут попасть в магистраль. Минимально допустимое содержание остаточного свободного хлора обеспечивает дополнительную дезинфекцию на всем пути воды до крана в случае, если имеет место дополнительный источник загрязнения: т.н. «дезинфицирующее последействие». Этом минимум содержания остаточного свободного хлора определен СанПиН-ом как 0,3 мг/л, а ПДК установлен как 0,5 мг/л. В периоды весеннего половодья и увеличения риска и степени загрязненности вод у источников водоснабжения на станциях водоочистки увеличивается общее количество вводимого хлора исходя из расчета указанных величин содержания остаточного хлора у потребителя, но, разумеется, добиться абсолютной точности не удается, и кратковременно могут наблюдаться повышенные значения содержания остаточного свободного хлора в воде до 1,0, а в редких случаях и до 1,2 мг/л. Такая вода выдает себя не только вкусам, но и запахом. Для справки: при таких значениях содержания хлора в воде запах от струи воды из крана ощущается во всем помещении, а при его содержании в 2 мг/л уже и в соседних помещениях.

До недавнего времени считалось, что хлорирование не оказывает вредного влияния на здоровье человека. Но исследования показали, что около10% хлора, используемого при хлорировании, участвует в образовании побочных продуктов (хлорсодержащих соединений) - галогенсодержащих соединений (ГСС), которые условно разделяются на три группы: высокоприоритетные, относительно приоритетные и низкоприоритетные. К приоритетным ГСС относятся: хлороформ, четырёххлористый углерод, дихлорэтан, трихлорэтан, тетрахлоэтилен; перхлорэтилен, бромоформ, дихлорметан, дихлорэтан, дихдорэтилен, Большую часть ГСС составляют тригалометаны (ТГМ): дихлорбромметан, дибромхлорметан и бромоформ.

Образование тригалометанов обусловлено взаимодействием соединений активного хлора с органическими веществами природного происхождения (фулькокислоты, гуминовые кислоты и др.). На количество и состав образующихся галогенсодержащих углеводородов влияют как концентрация и природа органического соединения (промышленные, сельскохозяйственные, бытовые сточные воды, поверхностный сток населённых мест), так и условия водоподготовки: доза активного хлора, время его контакта с водой, температура, рН, присутствие других галогенов и т.д.

В сумме образующихся при водоподготовке ТГМ хлороформ составляет 70 - 90 %. При этом необходимо отметить, что в исходной воде, поступающей на водоподготовку, содержание хлороформа может быть незначительным и увеличивается только на этапах обработки воды после хлорирования .

Хлороформ является важным растворителем и обезжиривающим агентом. В небольших количествах он применяется как анестезирующее средство, в состав мазей, средств для шестимесячной завивки волос зубных паст и фумигантов и как активный ингредиент и консервант против кашля. В воду поступает главным образом за счёт хлорирования, а также в составе сточных вод предприятий фармацевтической промышленности, производство лаков, красок. На долю хлороформа приходится 90% от образующихся в воде, при её хлорировании, галогенуглеводородов. Так, содержание хлороформа в речной воде (реки Днепр), поступающей на обработку, не превышает 0,87 мкг/л.

После хлорирования концентрация хлороформа увеличивается до 13,5 мкг/л, что в 1,4 -32 раза превышает предельно допустимую концентрцию.

Хлороформ является умеренно токсичным (группа 2Б), но высоко кумулятивным веществом. Хлороформ не обладает мутагенной активностью. Максимальная концентрация хлороформа, не оказывающая влияния на санитарный режим водоёмов, равна 50 мг/л. пороговая концентрация по запаху - 18,03 мг/л.

Хлороформ вызывает профессиональные хронические отравления с преимущественным поражением печени и центральной нервной системы. Метаболизм хлороформа происходит в печени, а значительное депо - в жировой ткани. Хлороформ , по-видимому способен проникать через плацентарный барьер поскольку было найдено, что его концентрации в пуповинной крови выше, чем в крови матерей. Основные метаболиты хлороформа выводились через лёгкие или через почки (в виде неорганических хлоридов). Среди потенциальных опасностей, связанных с воздействием концентраций, наиболее серьёзными являются канцерогенные эффекты, наблюдаемые у экспериментальных животных, и предположение об аналогичных эффектах у людей, подвергающихся воздействию повышенных концентраций тригалометанов в питьевой воде.

При хлорировании есть вероятность образования чрезвычайно токсичных соединений, тоже содержащих хлор, - диоксинов (диоксин в 68 тыс. раз ядовитее цианистого калия). Хлорированная вода обладает высокой степенью токсичности и суммарной мутагенной активностью (СМА) химических загрязнений, что многократно увеличивает риск онкологических заболеваний.

По оценке американских экспертов, хлорсодержащие вещества в питьевой воде косвенно или непосредственно виновны в 20 онкозаболеваниях на 1 млн. жителей. Риск онкозаболеваний в России при максимальном хлорировании воды достигает 470 случаев на 1 млн. жителей. Предполагается, что 20-35% случаев заболевания раком (преимущественно толстой кишки и мочевого пузыря) обусловлены потреблением питьевой воды. По мнению некоторых исследователей, с употреблением загрязнённой воды может быть связано от 30 до 50% случаев злокачественных опухолей. Другие приводят расчёты, в соответствии с которыми потребление речной воды может привести к увеличению онкозаболеваемости на 15%.

Физико-химические свойства хлорорганических соединений. Хлорорганические соединения, используемые в качестве инсек­тицидов, приобретают особое и самостоятельное значение в сельском хозяйстве.

Эта группа соединений с определенным назначением имеет своим прототипом широко известное сейчас вещество - ДДТ.

По своему строению хлорорганические соединения, представ­ляющие токсикологический интерес, можно разделить на 2 группы - производные алифатического ряда (хлороформ, хлор­пикрин, четыреххлористый углерод, ДДТ, ДДД и др.) и произ­водные ароматического ряда (хлорбензолы, хлорфенолы, алдрин и др.).

В настоящее время синтезировано огромное количество сое­динений, содержащих хлор, которые в основном обязаны своей активностью именно этому элементу. К их числу следует отнести алдрин, диэлдрин и др. Содержание хлора в хлорированных углеводородах составляет в среднем от 33 до 67%.

Основные представители данной группы хлорорганических соединений-инсектицидов, иллюстрируются в табл. 5.

Группа хлорорганических инсектицидов, приведенная в таб­лице, далеко не исчерпывает всего наличия этих соединений.

Но, ограничиваясь лишь 12 основными представителями (с вклю­чением сюда и различных изомеров или подобных соединений), мы можем по структуре этих веществ сделать некоторые обобщения об их токсичности.

Из фумигантов (дихлорэтан, хлорпикрин и парадихлорбен-зол) особенной токсичностью отличается хлорпикрин, в период первой мировой войны являвшийся представителем БОВ удуша­ющего и слезоточивого действия. Остальные 9 представителей являются собственно инсектицидами, причем в основном кон­тактными. По химическому строению это или производные бен­зола (гексахлоран, хлориндан), нафталина (алдрин, диэлдрин и их изомеры), или соединения смешанного характера, но в которые входят компоненты ароматического ряда (ДДТ, ДДД, пертан, хлортен, метоксихлор).

Все вещества этой группы вне зависимости от своего физиче­ского состояния (жидкости, твердые тела) плохо растворяются в воде, обладают более или менее специфическим запахом и ис­пользуются или для фумигации (в этом случае они обладают высокой летучестью), или в качестве контактных инсектицидов. Формами их применения служат дусты для опыления и эмульсии для опрыскивания.

Промышленное производство, равно как и использование в сельском хозяйстве строго регламентированы соответствую­щими инструкциями, предупреждающими возможность отравле­ния людей и отчасти животных. В отношении последних еще очень многие вопросы не могут считаться окончательно решенными.

Токсикология. Токсичность хлорорганических соединений из группы фумигантов и инсектицидов довольно различна. Она достаточно хорошо определена и изучена на лабораторных жи­вотных, но в отношении сельскохозяйственных животных и птиц сведения о токсичности указанной группы соединений недоста­точны и порой противоречивы. Однако массовые случаи инто­ксикаций животных неоднократно описаны в ветеринарной ли­тературе всех стран, где внедрены в сельское хозяйство данные препараты.

Вполне естественно высказать некоторые общие положения о характеристике токсических свойств хлорорганических соедине­ний на основании их физико-химических свойств.

Из физических свойств прежде всего имеют значение лету­честь веществ и их растворимость. Летучие вещества, исполь­зуемые в качестве фумигантов, представляют опасность при вды­хании воздуха, содержащего примесь дихлорэтана, хлорпикрина и хлорбензола. Растворимость в жирах и маслах при резорб­ции через пищеварительный тракт обусловливает липоидотроп-

ное влияние в организме, проявляющееся прежде всего пора­жением нервной системы.

Химические свойства веществ данной группы определяются наличием и количеством хлора в том или ином соединении. Имеет также значение и степень прочности связи хлора в дан­ном соединении. В отношении насекомых эти соединения чаще всего проявляют несколько более замедленное влияние, чем инсектициды растительного происхождения (например, пирет­рум и др). Через неповрежденную кожу животных эти вещества могут резорбироваться в виде масляных растворов и эмульсий. Способность проникать через кутикулу насекомых в большей степени, чем1 через кожу животных, и является основанием боль­шей токсичности этих веществ как инсектицидов.

После того, как вещество поступило в организм, оно начи­нает насыщать жировую ткань. Концентрации этого накопле­ния бывают различными в зависимости от того или иного сое­динения. В частности, метоксихлор вообще почти не накапли­вается в жировой ткани, тогда как ДДТ и многие другие соеди­нения могут оказаться в значительном количестве в этой ткани при том условии, если содержатся в кормах в очень малых коли­чествах (около 1 мг на 1 кг корма).

Накапливаясь в жировой ткани, эти вещества очень долгое время сохраняются в ней (гексахлоран, например, до трех и более месяцев) после исключения этих поступлений, что сооб­щает как жиру, так отчасти и мясу (с прослойками жира) специфический привкус. В мозговой и нервной ткани кумуляции этих веществ, как

правило, не наблюдается, тогда как в же­лезах внутренней секреции (в надпочечниках) они накапли­ваются в тех же количествах, что и в жировой ткани.

Всасывание хлорорганических производных из кишечника происходит в сравнительно слабой степени. Большая часть при поступлении их в организм этим путем выводится с каловыми массами. Однако не у всех теплокровных этот путь выведения является главным. У кролика значительная часть ДДТ при поступлении в организм через пищеварительный тракт выде­ляется с мочой в виде ацетилированного соединения. Незначи­тельные количества ДДТ при этом обнаруживаются и в желчи. У кошек, наоборот, выделение ДДТ почти не происходит, а у крыс ДДТ превращается в ацетилированную форму очень слабо.

Значительное количество некоторых хлорорганических сое­динений выделяется с молокой, в особенности ДДТ, затем гамма-изомер ГХЦГ, хлориндан и диэлдрин. Метоксихлор е мюлоке практически отсутствует. Установлено, что при таких ничтожных количествах ДДТ в сене, как 7-8 мг на 1 кг корма

в молоке коров, поедающих его, количество препарата дости­гает 3 мг на 1 кг молока, а так как это вещество растворяется в жировой части молока, то масло может содержать до 60- 70 мг на 1кг продукта, что представляет определенную опас­ность для телят (в подсосный период), а также для людей.

Токсикодинамика хлорорганических соединений как "в от­ношении насекомых, так и млекопитающих изучена недоста­точно. Предположений по этому поводу в литературе опубли­ковано немало. В одних случаях связывали токсичность данных соединений с количеством соляной кислоты, образующейся при разрушении и детоксикации этих веществ в организме, в дру­гих - высказывалось наиболее вероятное предположение о том, что токсическое влияние обусловлено нарушением как самимя веществами, так и продуктами их распада, энзимных процес­сов. Последнее имеет основание потому, что алдрин и диэлдрин (равно как и их изомеры) в своем влиянии имеют много сход­ного с фосфорорганическими соединениями.

Касаясь каждого из приведенных 12 веществ в характери­стике их токсичности к сельскохозяйственным животным, сле­дует отметить вещества с относительно низкой токсичностью: ДДД, метоксихлор и пертан. Остальные соединения более ток­сичны и могут вызывать как острые, так и хронические отрав­ления животных. Хронические интоксикации чаще всего наблю­даются от таких соединений, которые медленно удаляются из жировой ткани организм1а (ДДТ и гексахлоран). Метоксихлор сравнительно быстро разрушается в организме, и в силу этого хронические метоксихлорные интоксикации исключаются. Жи­вотные, имеющие меньшее отложение жира, более чувстви­тельны, чем жирные животные, у которых инсектициды откла­дываются в жировых депо и делаются вследствие этого для организма относительно инертными. Это имеет место и у исто­щенных животных одного и того же вида, в частности при влия­нии ДДТ. Более чувствительны животные в молодом возрасте. Особенно это касается телят 1-2-недельного возраста, отрав­ляющихся через молоко при наличии в корме коров инсектици­дов.

Токсичность инсектицидов, содержащих хлор, во многом за­висит и от того, в какой форме вещество поступает в организм. Так, с растительным М1аслом вещество оказывается более ток­сичным, чем с минеральным или в виде водной эмульсии. Наи­меньшей токсичностью обладают дусты. ДДТ, в частности, в 10 раз менее токсичен в водных эмульсиях, чем в масляном растворе.

Токсические дозы препаратов группы хлорорганических ин­сектицидов в среднем для лабораторных животных выражаются

в количествах на 1 кг веса животного: ДДТ около 200 мг, ДДД - 1 г, метоксихлор - 6 г, пертан - 8 г. Приведенные дозы говорят о различной токсичности этих четырех соединений.

Однако сельскохозяйственные животные более устойчивы к наиболее токсичному из них-ДДТ. Симптомы отравления у овец наступают от 500 мг на 1 кг. веса животного, и даже ко­личества до 2 г на 1кг веса не всегда вызывают смертельный исход. Козы еще более устойчивы, чем овцы. Примерно такие же дозы ДДТ вызывают отравление и у взрослого крупного ро­гатого скота. Однако у телят 1-2-недельного возраста дозы сни­жаются до 250л1гна 1 кг веса. Гарнер приводит следующее рас­положение животных по-чувствительности к ДДТ: мышь, кошка, собака, кролик, морская свинка, обезьяна, свинья, лошадь, крупный рогатый скот, овца и коза. Более чувствительна к ДДТ рыба, а птицы, наоборот, более устойчивы.

Овцы, козы, коровы и лошади переносят без заметных при­знаков отравления дозы ДДТ в пределах 100-200 мг на 1 кг веса, поступающие в течение нескольких дней. Естественно, что остальные 3 препарата (ДДД, метоксихлор и пертан) могут вызвать отравления у сельскохозяйственных животных при длительном поступлении с кормом веществ и в значительно больших количествах, чем ДДТ.

Токсичность гексахлорана изменяется от изомерии этого соединения. Наиболее токсичным из изомеров является гамма-изомер. Средняя однократная смертельная доза гексахлорана (с содержанием1 до 12% гамма-изомера) составляет примерно 1 г на 1 кг веса. Но у разных животных устойчивость к этому ядохимикату неодинакова. Так, описаны случаи, когда собаки погибали от 20-40 мг на 1 кг веса, а лошади -от 50 г по­рошка, содержащего 21% гексахлорана. Телята особенно чув­ствительны к гексахлорану, и минимальная токсическая доза у них составляет около 5 мг на 1 кг их веса, тогда как для взрос­лого рогатого скота (коров, овец) она в 5 раз выше. Вообще молодые животные всех видов более чувствительны, чем взрос­лые. Однако телята все же менее устойчивы, чем ягнята и по­росята. У истощенных животных также наблюдается повышен­ная чувствительность к гексахлорану. У птиц после пребывания в течение 0,5-2 часов под воздействием концентрации 0,002% гамма-изомера гексахлорана в воздухе проявлялись симптомы отравления, а удвоенная концентрация вызывала их гибель (Каревич и Маршан, 1957).

Хлорорганические соединения, являющиеся производными нафталина (алдрин, диэлдрин и их изомеры), в отношении ток­сичности представляют собой особую группу, значительно отли­чающуюся от предыдущих препаратов.

Наличие в диете алдрина и диэлдрина в количестве до 5мг на 1 кг корма, как правило, не вызывает симптомов интоксика­ции. Увеличение до 25 мг на 1 кг корма замедляет рост у мо­лодняка, а свыше 100 мг на 1 кг корма вызывает признаки от­равления.

Хлориндан наименее токсичный препарат, однако его ток­сичность во многом зависит от применяемых форм препарата. Средние токсические дозы для овец составляют 200-250 мг на 1 кг веса, а для телят-от 25 мг на 1 кг веса. Однако при мно­гократных обработках овец 1-2-процентными эмульсиями и дустами у них очень часто имело место хроническое отравление. Наблюдались отравления и у птиц.

Другие препараты этой группы инсектицидов по токсичности от вышеизложенных не отличаются. Полихлоркамфен (токса-фен), отличающийся низкой токсичностью, вызывает токсиче­ские симптомы у овец. Его токсические дозы равны у овец 25 мг на 1 кг веса, а у коз 50 мг на 1кг веса. Однако даже такие высокие дозы, как 250 мг на 1 кг веса, не всегда вызы­вают смертельный исход. Телята и к полихлоркамфену особен­но чувствительны, и у них токсические симптомы могут появ­ляться от 5 мг на 1кг веса. Цыплята относительно устойчивы к полихлоркамфену. У собак - хронические отравления не наблюдались даже в тех случаях, когда им давали полихлор­камфен в течение трех месяцев по 4 мг на 1 кг веса. Применение эмульсий и суспензий этого препарата 1,5-процентной концент­рации для купания и обмывания лошадей, крупного рогатого скота, овец и коз 8 раз с 4-дневным1 промежутком не вызывало симптомов отравления. При обработке телят 0,75 и 1-процент­ными растворами полихлоркамфена могут быть интоксикации,

но для уничтожения насекомых бывает вполне достаточным использование и более низких концентраций - 0,25-0,5-про­центных (Гарнер).

Отравления хлорорганическими соединениями. Клинические признаки. Острые отравления прежде всего наблюдаются при использовании наиболее токсичных хлорорганических соедине­ний (ГХЦГ, алдрин, диэлдрин и др.). В основном клинические проявления выражаются в возбуждении центральной нервной системы, однако в этом случае отличаются значительным разно­образием.

Естественно, что и возникновение симптомов отмечается че­рез различное время после поступления ядовитого вещества в организм). В одних случаях появление признаков отмечают в течение первого часа, но их обнаружение возможно спустя сутки и больше. Характер реакции организма может проявляться по­степенным ухудшением общего состояния, но может и сразу стать очень тяжелым.

Животные прежде всего становятся пугливыми и проявляют повышенную чувствительность, а иногда и агрессивность. Затем отмечается поражение глаз (блефароспазм), подергивания ли­цевых мышц, судорожные сокращения мускулатуры шеи, перед­ней и задней части туловища. Мышечные спазмы повторяются через более или менее определенные интервалы или выража­ются отдельными приступами различной силы. Повышается сек­реция слюны, усиливаются жевательные движения, появляется пена, иногда в значительных количествах.

При более интенсивном влиянии ядовитого вещества живот­ное бывает сильно возбужденным, с признаком буйства и по­терей координации движений. Оно натыкается на посторонние предметы, спотыкается, делает круговые движения и т. п. Не­редко животное в этом случае принимает ненормальные позы, опуская низко, к передним конечностям голову.

Усиливаясь, такие разнообразные симптомы доходят до кло-нических судорог, сопровождающихся плавательными движе­ниями, скрежетанием зубов, стонами или мычанием. Приступы судорог повторяются иногда через регулярные интервалы или бывают нерегулярными, но, начавшись, каждый из них может закончиться смертью животного.

У некоторых животных наблюдается стремление лизать собственную кожу.

Иногда появление симптомов интоксикации наступает вне­запно. Животное резко вскакивает и падает в приступе судорог без каких-либо предварительных симптомов заболевания.

Нередко отравившиеся животные находятся в коматозном состоянии в течение нескольких часов до наступления смерти.

Если приступы судорог продолжаются значительное время, то быстро повышается температура тела, появляется одышка, и смерть наступает в основном от недостаточности сердечной дея­тельности, связанной с нарушением дыхания, что характери­зуется сильным цианозом видимых слизистых оболочек.

Общая чувствительность к раздражению в период появления симптомов отравления у животных бывает значительно повы­шенной (особенно при отравлении ароматическими хлорсодер-жащими соединениями). Наоборот, при других случаях отме­чается сильная депрессия, сонное состояние, полное отсутствие аппетита, постепенное истощение, нежелание передвигаться. Эти симптомы могут оставаться до наступления смерти или сме­няться сильным внезапным возбуждением.

Тяжесть обнаруживаемых симптомов при данных отравле­ниях не всегда отражает общее состояние организма в отноше­нии прогноза. В зарубежной литературе (Раделев и др.) приво­дятся случаи, когда животные погибали после первого и кратко­временного приступа судорог и, наоборот, переживали много­кратные приступы такой же силы.

При отравлении менее активными хлорорганическими соеди­нениями (ДДТ, ДДД и метоксихлор) животные вначале прояв­ляют беспокойство и становятся более возбужденными и высо­кочувствительными, чем животные, отравившиеся препаратами более высокой токсичности. Подергивание лицевых мышц (осо­бенно век) отмечается вскоре после отравления. Затем этот тремор распространяется и на другие участки мускулатуры, де­лаясь более сильным, и сопровождается резко возрастающей одышкой. После таких тяжелых конвульсивных приступов жи­вотные находятся в стадии депрессии и оцепенения.

При отравлениях средней степени тремор или бывает мало­заметным, или вообще отсутствует. У животных наблюдается связанность движений. Рефлексы бывают пониженными. Быстро снижается упитанность.

Симптомы отравления чаще всего проявляются в течение 5-6 часов после поступления ядовитого вещества. Но это во многом зависит от поступившего соединения и от чувствитель­ности к нему данного животного. Симптомы отравления от ДДТ у овец и коз могут не обнаруживаться в течение от 12 до 24 ча­сов, в продолжение недели они иногда не проявляются у крупно­го рогатого скота. Смерть от ГХЦГ у собак наступает в течение первых двух суток, а иногда через несколько дней. У лабора­торных животных (крыс, кроликов и собак) смерть при отравле­нии алдрином наступает в течение 24 часов, однако наблюда­лись случаи, когда после однократной дозы животное погибало лишь на 8-е сутки. При обработке овец диэлдрином смерть на"ступала спустя 10 суток, но она может быть и раньше. Диэл-дрин, по литературным данным, имеет особенно продолжитель­ный «скрытый» период своего влияния (до 14 суток) после об­работки животных.

Отравление хлоринданом, заканчивающееся смертью, иногда может себя не обнаруживать клинически в течение двух недель после однократной дозы. Токсикоз полихлоркамфеном после ра­зовой дозы, наоборот, проявляется бурной реакцией со стороны организма, и животные с признаками типичного отравления в те­чение 24-36 часов полностью выздоравливают. Появление та­кой замедленной картины отравления хлоринданом, приводя­щего в некоторых случаях к смерти, говорит о том, что эти инсектициды могут сохраняться и медленно выделяться из организма, представляя собой кумулятивные яды.

Клинические признаки при хроническом отравлении доволь­но сходны с симптомами острой интоксикации хлорорганиче­скими инсектицидами, при которой также наблюдаются мышеч­ные подергивания на голове, шее и других частях туловища. Изредка могут иметь место и судороги разной силы. Отмечается общая депрессия, постепенно усиливающаяся. Смертельные слу­чаи при хронических отравлениях наблюдались редко.

Диагноз. Диагностируется отравление хлорорганическими инсектицидами на основании анамнеза, при сборе которого ис­следуется вопрос о контакте животных с указанными ядохими­катами. В сомнительных случаях и особенно при хроническом отравлении в постановке диагноза может иметь значение иссле­дование молока у лактирующих животных, поскольку многие из веществ этой группы выделяются с молоком. Для этой цели используют биологическую пробу на мухах, с помощью которых можно установить наличие очень малых количеств инсектици­дов.

Прогноз. При острых отравлениях и наиболее сильнодейст­вующими инсектицидами прогноз неблагоприятный. При хрони­ческих отравлениях и при своевременном установлении диагноза прогноз благоприятный.

Лечение. В острых случаях отравлений у животных лечеб­ные мероприятия должны быть направлены на устранение судо­рог с помощью веществ, угнетающих и успокаивающих цент­ральную нервную систему. Наиболее пригодными для этой цели являются барбитураты (пентотал натрия). Однако не всегда и не у всех видов животных удается применением барбитуратов снять приступы судорог. Все хлорсодержащие препараты при острых отравлениях имеют ту особенность, .что, как и при отрав­лении газообразным хлором, наиболее опасным для жизни

периодом являются первые сутки после поступления яда. Если животное переживет 24-48 часов, то в дальнейшем опасность его гибели почти исключается.

Желательно освободить желудочно-кишечный тракт от со­держимого, но только применением солевых слабительных, а не масел. Последние, способствуя растворению и всасыванию хлор-содержащих соединений, ускоряют гибель животных. Если же отравление происходит при всасывании веществ через кожу, не­обходимо удалить эти вещества с шерсти и предотвратить тем самым дальнейшее поступление их в организм.

Отравление крупных животных этими инсектицидами мало­вероятно, но оно может иметь место. В зарубежной литературе рекомендуется в таких случаях предпочитать применению бар-битуратов интравенозное введение борглюконата кальция и глю­козы. Рекомендуется также использование слабительных из группы антрахинона (истицин) в сочетании с глюкозой - исти-цин из расчета 0,1 г на 1кг веса животного, в водной суспензии (Гарнер). При отравлении собак ДДТ особенно хорошие ре­зультаты дает интравенозное введение 2-3 г борглюконата кальция.

Патологоанатомические изменения. При вскрытии трупов животных, павших от острого отравления хлорорганическими инсектицидами, особо характерных изменений не обнаружива­ется. В тех случаях, когда смерть наступает после значительного повышения температуры тела и вообще бурной реакции орга­низма, могут иметь место набухание слизистых оболочек и блед­ность окраски некоторых органов. Обнаруживаются также не­большие кровоизлияния, особенно под эпикардом и эндокардом. По ходу коронарных сосудов эти кровоизлияния иногда быва­ют значительных размеров. Сердечная мышца левой половины сердца сокращена и бледна. Мышцы правой половины сердца несколько растянутые и дряблые, особенно при длительном те­чении отравления.

Легкие спавшиеся, или имеют очаги эмфиземы и ателектаза. В отдельных случаях, быстро заканчивающихся (в течение пер­вых суток) смертью, имеет место выраженный отек легких с на­личием значительного количества пенистой жидкости в бронхах и трахее. Под слизистой оболочкой последних, а также и под плеврой имеются кровоизлияния.

При пероральном поступлении хлорорганических ядовитых веществ отмечается гастроэнтерит в различной степени. Голов­ной и спинной мозг с признаками застойной гиперемии.

При хронических отравлениях отмечаются дегенеративные изменения в печени и почках.

Гистологические изменения: застойные явления, мутное на­бухание и кровоизлияния в органах, жировая дегенерация, осо­бенно в печени и почках. В печени обнаруживают некротические очажки в центре долек, но цирротических изменений не наблю­дается.

При отравлении хлориданом находят значительные пораже­ния сосудов в виде множества петехий и экхимоз в кишечнике, миокарде и паренхиматозных органах. То же самое отмечается у птиц при отравлении производными нафталина (алдрин и ди-элдр"ин).

Поэтому для предупреждения отравлений обработку живот­ных хлорорганическими инсектицидами надо осуществлять со­гласно существующим инструкциям, необходимо хранить ядо­химикаты в условиях, исключающих случайный контакт с ними животных, особенно молодняка. При использовании этих пре­паратов для обработки растений необходимо принять надлежа­щие меры к ограждению соприкосновения с ними животных всех видов и птиц. При применении ядохимикатов как данной группы, так и фосфорорганических инсектицидов необходимо обратить особое внимание на то, чтобы не допустить посеще­ния пчелами растений, обработанных указанными препа­ратами.

Анализ. Анализ кормовых средств, содержащих в себе хлор-органические инсектициды, в целях уточнения диагноза прак­тически не осуществляется. В этом нет никакой необходи­мости.

Встречается надобность в установлении содержания ДДТ в пищевых продуктах (по линии санитарной службы) и в зерне. Использование животным и птицам зерна, в котором установ­лено наличие ДДТ, должно быть исключено. При наличии в зерне гексахлорана выше 1-1,5 мг на 1 кг оно может быть использовано на корм.

Определение ДДТ производится в специальных лаборато­риях методом Кульберга и Шима согласно установленной инст­рукции, а гексахлорана -по методу Свершкова.

Установлено, что остаточное количество метоксихлора в мо­локе не должно превышать 14 мг на 1 кг молока.

Список литературы:

Баженов С.В. «Ветеринарная токсикология» // Ленинград «Колос» 1964

Голиков С.Н. «Актуальные проблемы современной токсикологии» // Фармакология Токсикология –1981 №6.-с.645-650

Лужников Е.А. «Острые отравления» //М. «Медицина» 1989