Соединение деталей контактной точечной сваркой. Уход за электродами

Материал электродов для контактной сварки выбирается исходя из требований, обусловленных специфическими условиями работы электродов, т.е. значительным нагревом c одновременным сжатием, тепловыми напряжениями, возникающими внутpи электрода вследствие неравномерногo нагрева, и дp. Стабильность качества зависит oт сохранения формы рaбочей поверхности электрода, контактирующей сo свариваемой деталью. Обычнo стойкость электродов oценивают по количеству точек, сваренных пpи интенсивном режиме, пpи котором диаметр торца электрода увeличивается до размеров, требующих заточки (около 20%).

Перегрев, окисление, деформация, смещение, подплавление электродов при нагреве усиливают иx износ. Чистая медь является тепло- и электропроводной, но не жаропрочной. Нагартованную медь из–зa низкой температуры рекристаллизации применяют рeдко. Чаще используются сплавы меди c добавлением легирующих элементов. Легирование меди хромом, бериллием, алюминием, цинком, кадмием, цирконием, магнием, мало снижaющими электропроводность, повышает её твердость в нагретом состоянии. Никель, железо, и кремний вводятся в медь для упрочнения электродов. Электропроводность сплавов оценивают в % по сравнению c проводимостью отожжeнной меди - 0,017241 Oм мм 2 /м.

Электроды со вставками из вольфрама и молибдена обеспечивают высокую стойкость пpи сварке оцинкованной стали. А электроды–плиты из сплавов c твердостью 140–160НВ оcнащают вставками из металлокерамического сплава (40% Cu и 60% W) или бронзы Бр.НБТ (смотрите таблицу).

Таблица. Материал электродов для контактной сварки : характеристика некоторых сплавов, основное назначение .


Материал для электродов контактной сварки, марка

Минимальная твердость НВ

Содержание легирующих элементов, % массы Тр, °С

Основное назначение

99 Сu 150– 300

Электроды и ролики для сваpки алюминиевых сплавов

1,0 Ag 250– 300

Бронза Бр.ХЦрА 0,3–0,09

0,03–0,08 Zr; 0,4–1,0 Cr; 340– 350

Электроды и ролики для сваpки алюминиевых и медных сплавов

Бронза Бр.К1 (МК)

0,9–1,2 Сd 250– 300

Бронза Бр.Х

0,4–1,0 Cr 350– 450

Электроды и ролики для сваpки углеродистых, низколегированных стaлей и

Бронза Бр.ХЦр 0,6–0,05

0,03–0,08 Zr; 0,4–1,0 Cr; 480– 500

Бронза Бр.НТБ

1,4–1,6 Ni; 0,05–0,15 Тi; 0,2–0,4 Ве; 500– 550

Электроды, ролики для сварки углеродистых, нержавеющих сталей и жаропрочных сплавов

Бронза Бр.КН1–4

3–4 Ni; 0,6–1 Si; 420– 450

Губки для сварки углеродистых, нержавеющих сталей и жаропрочных сплавов

Кадмиевая бронза Бp.Кд1 (МК)

0,9–1,2 Cd -

Электроды, ролики для сварки лeгких и медных сплавов

Хромо–циркониевая бронза Бp.ХЦp 0,3–0,9

0,07–0,15 Zr; 0,15–0,35 Cr; -

Хромовая бронза Бр.X для , никеля, титана и их сплавов

0,3–0,6 Zn; 0,4–1,0 Cr; -

Электроды и ролики

Хромо–циркониевая бронза Бp.ХЦр 0,6–0,05

0,03–0,08 Zr; 0,4–1,0 Cr; -

Никeлево–хромо–кобальтовая бронза Бp.НКХКо

≤ 0,5 Ni; ≤ 5,0 Со; ≤ 1,5 Cr; ≤ 2,0 Si -

Никелево–бериллиевая бронза Бp.НБТ

1,4–1,6 Ni; 0,05–0,15 Тi; 0,2–0,4 Be; -

Электроды, губки, ролики для сварки химически активных, тугоплавких металлов и сплавов

Хромовая бронза Бp.Х08

0,4–0,7 Сr -

Контактные губки

Кpемне–никелевая бронза Бp.КН1–4

3–4 Ni; 0,6–1,0 Si; -

Кремне–никелевая бронза Бp.НК1,5–0,5

1,2–2,3 Ni; 0,15–0,5 Ti; 0,3–0,8 Si; -

Рассказ об электрододержателях и электродах для точечной сварки мы решили выделить в отдельную статью из-за большого объема материала по этой теме.

Электрододержатели машин точечной сварки

Электрододержатели служат для установки электродов, регулирования расстояния между ними, подвода сварочного тока к электродам и отвода тепла, выделяющегося при сварке. Форма и конструкция электрододержателей определяется формой свариваемого узла. Как правило, электрододержатель представляет собой медную или латунную трубу с конусным отверстием для установки электрода. Это отверстие может быть выполнено по оси электрододержателя, перпендикулярно оси или под углом. Часто одна и та же машина может комплектоваться несколькими вариантами электрододержателей для каждого вида электродов — в зависимости от формы свариваемых деталей. В некоторых машинах малой мощности электрододержатели могут совсем не входить в комплектацию, так как их функции выполняют сварочные хоботы.
В машинах стандартной комплектации чаще всего используются прямые электрододержатели (рис. 1), как наиболее простые. В них могут устанавливаться электроды различной формы. В случае сварки деталей больших размеров с ограниченным доступом к месту сварки целесообразно использовать фигурные электрододержатели с простыми электродами прямой формы. Крепятся они в электрододержателях за счет конусной посадки, штифтов или винтов. Удаление электрода из держателя производят легкими постукиваниями деревянным молотком или специальным экстрактором.

Электроды для точечной сварки

Электроды для точечной сварки служат для сжатия деталей, подвода сварочного тока к деталям и отвода тепла, выделяющегося при сварке. Это один из самых ответственных элементов сварочного контура машины точечной сварки, потому что форма электрода определяет возможность сварки того или иного узла, а его стойкость — качество сварки и продолжительность бесперебойной работы машины. Различают прямые (рис. 4) и фигурные электроды (рис. 5). Некоторые примеры применения прямых электродов приведены в таблице 1. Многие прямые электроды изготавливаются в соответствии с ГОСТ 14111-77 или ОСТ 16.0.801.407-87.

У фигурных электродов ось, проходящая через центр рабочей поверхности, значительно смещена относительно оси посадочной поверхности (конуса). Их применяют для сварки деталей сложной формы и узлов в труднодоступных местах.

Конструкция электродов для точечной сварки

Электрод для точечной сварки (рис. 6) конструктивно состоит из рабочей части (1), средней (цилиндрической) части (2) и посадочной части (3). Внутри тела электрода проходит внутренний канал, в который вводится трубка подачи охлаждающей воды электрододержателя.
Рабочая часть (1) электрода имеет плоскую или сферическую поверхность; диаметр рабочей поверхности d эл или радиус сферы R эл выбирают в зависимости от материала и толщины свариваемых деталей. Угол конуса рабочей части обычно составляет 30°.
Средняя часть (2) обеспечивает прочность электрода и возможность использования экстракторов или иного инструмента для демонтажа электродов. Производители применяют различные методики для расчета размеров электродов. В СССР согласно ОСТ 16.0.801.407-87 были установлены типоразмерные ряды:

D эл = 12, 16, 20, 35, 32, 40 мм

L = 35, 45, 55, 70, 90, 110 мм

В зависимости от максимального усилия сжатия машины:

D эл = (0,4 - 0,6)√F эл (мм).

Где: F эл — максимальное усилие сжатия машины (даН).

Посадочная часть (3) должна иметь конусность для плотной установки в электрододержатель и предотвращения протечек охлаждающей воды. Для электродов диаметром 12-25 мм конусность составляет 1:10, для электродов диаметром 32-40 мм — конусность 1:5. Длина конусной части не менее 1,25D эл. Обрабатывают посадочную часть с чистотой не ниже 7-го класса (R z 1,25).

Диаметр внутреннего канала охлаждения определяется расходом охлаждающей воды и достаточной прочностью электрода на сжатие и составляет:

d 0 = (0,4 - 0,6) D эл (мм).

Расстояние от рабочей поверхности электрода до дна внутреннего канала в значительной степени влияет на эксплуатационные характеристики электрода: стойкость, ресурс работы. Чем меньше это расстояние, тем лучше охлаждение электрода, но тем меньше переточек может выдержать электрод. По опытным данным:

h = (0,75 - 0,80) D эл (мм).

Тугоплавкие вставки из вольфрама W или молибдена Мо (рис. 4ж) запрессовываются в медные электроды или припаиваются серебросодержащими припоями; такие электроды применяют при сварке оцинкованных или анодированных сталей. Электроды со сменной рабочей частью (рис. 4и) и с шаровым шарниром (рис. 4к) применяют при сварке деталей из разных материалов или разнотолщинных деталей. Сменная рабочая часть изготавливается из вольфрама, молибдена или их сплавов с медью и крепится к электроду накидной гайкой. Применяются также стальные или латунные электроды с напрессованной медной оболочкой (рис. 4з) или медные электроды со стальной подпружиненной втулкой.

Материалы для электродов точечной сварки

Стойкость электродов — их способность сохранять размеры и форму рабочей поверхности (торца), противостоять взаимному переносу металла электродов и свариваемых деталей (загрязнение рабочей поверхности электрода). Она зависит от конструкции и материала электрода, диаметра его цилиндрической части, угла конуса, свойств и толщины свариваемого материала, режима сварки, условий охлаждения электрода. Износ электродов зависит от конструкции электродов (материал, диаметр цилиндрической части, угол конуса рабочей поверхности) и параметров режима сварки. Перегрев, оплавление, окисление при работе во влажной или коррозионной среде, деформации электродов при больших усилиях сжатия, перекос или смещение электродов усиливают их износ.

Материал электродов выбирают с учетом следующих требований:

  • электропроводность, сравнимая с электропроводностью чистой меди;
  • хорошая теплопроводность;
  • механическая прочность;
  • обрабатываемость давлением и резанием;
  • стойкость к разупрочнению при циклическом нагреве.

По сравнению с чистой медью сплавы на ее основе имеют в 3-5 раз большую стойкость к механическим нагрузкам, поэтому для электродов точечной сварки с их, казалось бы, взаимоисключающими требованиями применяют сплавы меди. Легирование кадмием Cd, хромом Сr, бериллием Be, алюминием Al, цинком Zn, цирконием Zr, магнием Мg не снижает электропроводность, но повышает прочность в нагретом состоянии, а железо Fe, никель Ni и кремний Si повышают твердость и механическую прочность. Примеры использования некоторых медных сплавов для электродов точечной сварки приведены в таблице 2.

Выбор электродов для точечной сварки

При выборе электродов основными параметрами являются форма и размеры рабочей поверхности электрода. При этом обязательно учитывают марку свариваемого материала, сочетания толщин свариваемых листов, форму сварного узла, требования к поверхности после сварки и расчетные параметры режима сварки.

Различают следующие виды формы рабочей поверхности электрода:

  • с плоскими (характеризуются диаметром рабочей поверхности d эл);
  • со сферическими (характеризуются радиусом R эл) поверхностями.

Электроды со сферической поверхностью менее чувствительны к перекосам, поэтому их рекомендуют к применению на машинах радиального типа и подвесных машинах (клещах) и для фигурных электродов, работающих с большим прогибом. Российские производители рекомендуют использовать для сварки легких сплавов только электроды со сферической поверхностью, что позволяет избежать вмятин и подрезов по краям сварной точки (см. рис. 7). Но избежать вмятин и подрезов можно, применяя плоские электроды с увеличенным торцом. Такие же электроды на шарнире позволяют избежать перекоса и поэтому могут заменить сферические электроды (рис. 8). Однако эти электроды рекомендуются в основном для сварки листов толщиной ≤1,2 мм.

Согласно ГОСТ 15878-79 размеры рабочей поверхности электрода выбираются в зависимости от толщины и марки свариваемых материалов (см. табл. 3). После исследования сечения сварной точки становится ясно, что есть прямые отношения между диаметром электрода и диаметром ядра сварной точки. Диаметр электрода определяет площадь поверхности контакта, которая соответствует фиктивному диаметру проводника сопротивления r между свариваемыми листами. Сопротивление контакта R будет обратно пропорционально этому диаметру и обратно пропорционально предварительному сжатию электродов для сглаживания микронеровностей поверхности. Исследования компании ARO (Франция) показали, что расчет диаметра рабочей поверхности электрода можно вести по эмпирической формуле:

d эл = 2t + 3 мм.

Где t — номинальная толщина свариваемых листов.

Наиболее сложно рассчитать диаметр электрода при неравной толщине свариваемых листов, сварке пакета из трех и более деталей и сварке разнородных материалов. Очевидно, что при сварке разнотолщинных деталей диаметр электрода должен выбираться относительно более тонкого листа. Используя формулу для расчета диаметра электрода, которая пропорциональна толщине свариваемого листа, формируем фиктивный проводник с сужающимся диаметром, который, в свою очередь, перемещает пятно нагрева к точке контакта этих двух листов (рис. 10).

При одновременной сварке пакета из деталей выбор диаметра рабочей поверхности электрода делается по толщине наружных деталей. При сварке разнородных материалов с разными теплофизическими характеристиками меньшее проплавление наблюдается у металла с меньшим удельным электрическим сопротивлением. В этом случае со стороны детали из металла с меньшим сопротивлением применяется электрод с большим диаметром рабочей поверхности d эл или изготовленный из материала с большей теплопроводностью (например, из хромистой бронзы БрХ).

Валерий Райский
Журнал «Оборудование: рынок, предложение, цены», № 05, май 2005 г.

Литература:

  1. Кнорозов Б.В., Усова Л.Ф., Третьяков А.В. Технология металлов и материаловедение. - М., Металлургия, 1987.
  2. Справочник машиностроителя. Т. 5, кн. 1. Под ред. Сатель Э.А. - М., Машгиз, 1963.
  • Параметрия контактных машин для стали и алюминия
  • Выбор портативных клещей
  • Эффективное применение машин многоточечной контактной сварки
  • ➔ Уход за электродами
  • Методы устранения сварочных дефектов
  • Точечная сварка металлов
  • Стыковая сварка металлов
  • Контактная сварка – особенности конструирования средств автоматизации и механизации
  • Эксплуатация контактных машин
  • Средства механизации и автоматизации при контактной сварке
  • Монтаж контактных машин
  • Основные технико-экономические показатели эффективности
  • Техника безопасности контактной сварки
  • Проверка контактной машины перед запуском
  • Выбор режима контактной сварки
  • Способы стыковой сварки, подготовка сварных конструкций
  • Режимы стыковой сварки оплавлением
  • Режимы стыковой сварки сопротивлением
  • Метод планирования эксперимента для выбора оптимальных параметров контактной точечной сварки.
  • Технологическая схема производства сварных узлов
  • Виды контактной сварки
  • Руководство по эксплуатации многоточечных машин для изготовления проволочных сеток МАЛС,МАКС
  • Контроллер машины многоточечной контактной сварки SA-2000AF
  • Контактная сварка со столом автоподачи SA-2000 AF для многоточечной сварки проволочной сетки
  • Руководство по эксплуатации тавровой сварки ST-1500
  • Данная таблица наглядно показывает важность обслуживания электродов. Это важно не только для сохранения качества сварного соединения, которое имеет первостепенное значение, но и для снижения лишней нагрузки на сварочное оборудование. После изучения табличных данных вы сможете сделать собственные выводы.

    ПРОФИЛЬ НАКОНЕЧНИКА

    СВАРОЧНОЕ ПЯТНО

    ТРЕБУЕМАЯ СИЛА ТОКА, А

    РЕЗУЛЬТАТ

    ПРАВИЛЬНОЕ ОБСЛУЖИВАНИЕ ЭЛЕКТРОДОВ ДЛЯ КОНТАКТНОЙ ТОЧЕЧНОЙ И РЕЛЬЕФНОЙ СВАРКИ

    Электроды для рельефной сварки

    Для обеспечения точного выравнивания, необходимого для хорошего контакта и качества сварных соединений, электроды для рельефной сварки должны быть расположены прямо на центральной линии приложения давления. В дополнение к появлению некачественных сварных соединений недостаточная центровка электродов может привести к повреждению их поверхностей [рис. 1].

    Другой серьёзной причиной плохой сварки является непараллельность поверхностей электродов. Она влечёт за собой неравномерное давление на электродах, что приводит к выплёскиванию расплавленного металла из области сварки во время сварочного цикла. В том случае, если сварка пошла через несущую часть электрода, повреждаются рельефы, и может сгореть изоляция. Кроме того, непараллельность приводит к закусыванию наконечников электродов их несущими частями во время сварки, в результате чего возникает ожог на заготовке в месте контакта со смещёнными рельефами, и возможен сдвиг относительно ответных частей сварочной оснастки [рис. 2].

    СЛЕДУЕТ
    ... держать запас электродов на станке, чтобы минимизировать простои из-за замены электрода,
    ... подтачивать электроды на токарном станке,
    ... использовать специальный 3 класс меди для наконечников электродов.
    НЕ СЛЕДУЕТ
    ... подпиливать электроды (неровная поверхность приведет либо к частичной сварке, либо к выплеску металла из сварочной зоны),

    Электроды для точечной сварки

    При контактной точечной сварке тепловая концентрация зависит от размеров и формы наконечников электродов. Сварка осуществляется по всей площади под наконечником электрода, через который проходит ток. Наконечники небольших диаметров электродов для точечной сварки разрушаются или стачиваются гораздо быстрее своих собратьев по рельефной сварке, и, следовательно, их необходимо регулярно подтачивать, чтобы поддерживать правильный контакт [рис. 3].

    СЛЕДУЕТ
    ... держать запас электродов на станке,
    ... периодически подтачивать электроды на специализированном станке,
    ... менять диаметра наконечников при работе с разными толщинами свариваемого металла.
    НЕ СЛЕДУЕТ
    ... подпиливать электроды (неровная поверхность приведет к непроварам),
    ... хранить электроды в местах, где возможно повреждение их поверхностей,
    ... использовать разводной ключ для снятия электродов.

    1. Для обеспечения идеального выравнивания, поверхности и оси электродов должны быть параллельны. Это может быть проверено путем вставки между электродами куска угля и листа чистой белой бумаги и запуска электродов в тестовом режиме. Получившийся на бумаге отпечаток покажет размер и однородность плоскости контакта между двумя поверхностями.

    2. Используйте водяную рубашку в случае необходимости и располагайте её как можно ближе к сварочной поверхности.

    3. Держите свариваемый материал чистым: без масла, пленки, грязи и других посторонних веществ.

    4. Следуйте предписанной технологической процедуре сварки.

    СВАРОЧНЫЕ ЭЛЕКТРОДЫ И ДЕРЖАТЕЛИ


    РЕКОМЕНДУЕТСЯ
    ВОСПРЕЩАЕТСЯ
    1. Используйте электроды из материала, подходящего для вашей задачи.

    2. Используйте стандартные электроды везде, где это возможно.

    3. Используйте наконечники оптимального диаметра для заданной толщины свариваемых материалов.

    4. Использование прозрачные шланги, чтобы постоянно контролировать ток воды через электроды.

    5. Подключите шланг подачи воды к соответствующему входу на держателе для того, чтобы вода сначала поступала в центральную охлаждающую трубу.

    6. Охлаждайте электроды водой, текущей со скоростью не менее 7 литров в минуту через каждый наконечник.

    7. Убедитесь, что внутренняя трубка системы охлаждения держателя вставлена в отверстие для воды на наконечнике на глубину до 6мм.

    8. Отрегулируйте внутреннюю трубку системы охлаждения держателя по высоте при переходе на наконечник другой длины.

    9. Убедитесь, что верхний конец трубки системы охлаждения держателя обрезан под углом, не вызывающим заедание наконечника и перекрытие подачи воды.

    10. Нанесите тонким слоем специальную смазку на стержень наконечника до вставки в держатель, чтобы легче было его вытаскивать.

    11. Используйте держатели эжекторного типа для легкого извлечения наконечников и чтобы избежать повреждений стержней наконечников.

    12. Держите наконечник и держатель чистыми, гладкими и свободными от посторонних субстанций.

    13. Подтачивайте электроды точечной сварки достаточно часто для сохранения качества сварки.

    14. Подтачивайте электроды на токарном станке до первоначальной формы по мере возможности.

    15. Используйте кусок кожи или резиновый молоток при выравнивании держателя или наконечника.

    16. Подавайте охлаждающую жидкость с обеих сторон диска при шовной сварке.

    17. Используйте специально разработанные накаточные диски для поддержания надлежащей формы дискового электрода для шовной сварки.

    1. Никогда не используйте неизвестные электроды или электродные материалы.

    2. Избегайте специальных, офсетных или нестандартных наконечников, когда работу можно выполнить с помощью стандартного прямого наконечника.

    3. Не используйте маленькие наконечники для сварочных работ с тяжёлыми большими заготовками и наоборот.

    4. Не забудьте включить подачу охлаждающей воды на полную мощность прежде, чем начать сварку.

    5. Никогда не используйте шланг, который неплотно садится на сосок подачи воды на держателе.

    6. Не допускайте протечек, засорения или повреждения водяной оснастки.

    7. Избегайте использования держателей с текущими или деформированными трубками.

    8. Никогда не используйте держатели электродов, которые не имеют регулируемых внутренних трубок системы охлаждения.

    9. Не давайте трубке закупориться из-за накопления примесей. Несколько капель масла с разумной периодичностью помогут сохранить трубку рабочей.

    10. Не позволяйте электродам оставаться без дела в держателях на длительные промежутки времени.

    11. Не используйте разводные ключи или аналогичные инструменты для извлечения электродов.

    12. Избегайте использования свинцовых белил или подобных соединений для герметизации протечки переходников.

    13. Никогда не позволяйте наконечнику электрода точечной сварки сплющиться до такой степени, что подточка станет затруднительной.

    14. Никогда не используйте грубые диски для подточки электродов.

    15. Не бейте по держателю или наконечнику стальным молотком при выравнивании оснастки.

    16. Избегайте в шовной сварке использования дисков слишком тонких для данной тепловой или физической нагрузки.

    17. Не давайте сварочным дискам выходить за пределы свариваемых заготовок.

    Высокая стойкость электрода и надлежащее качество сварного точечного соединения невозможны без правильного ухода за электродами. От 3 до 10% рабочего времени сварщика уходит на обслуживание электрода. Правильный уход за электродами позволяет одной парой электродов выполнить 30…100 тыс. сварных точек, при этом расход электродного сплава составляет всего лишь 5…20 г на тысячу сваренных точек.

    Уход за электродами точечных машин состоит из двух операций - зачистки электродов непосредственно на машине и заправки снятого электрода на токарном или специальном станке.

    Периодичность зачистки зависит главным образом от свариваемого материала. При сварке стали с хорошо подготовленной поверхностью в одних случаях можно обходиться без зачистки, в других требующаяся зачистка выполняется после сварки нескольких сот точек. При сварке алюминиевых сплавов требуется зачистка электродов через 30…60 точек, иначе начинается прилипание электродного металла к свариваемому, что нарушает процесс сварки, а также ухудшает коррозионную стойкость сварного соединения. Это же явление наблюдается и при сварке других материалов с пониженной температурой плавления, таких, например, как магний.

    Зачистку следует осуществлять таким образом, чтобы, не снимая большого количества металла, получить чистую поверхность электрода. Для упрощения этой операции и облегчения условий труда при зачистке электродов применяются специальные приспособления.

    Наиболее простое приспособление показано на рис. 1. Оно представляет собой лопаточку с двусторонними углублениями, в которые вкладывается наждачная бумага. Лопаточка вставляется между сжатыми электродами, и при поворачивании вокруг оси электродов зачищает их контактные поверхности.

    Рис. 1. Приспособление для ручной зачистки электродов:

    1 - шкурка; 2 - сферическая выемка.

    Вместо такой лопаточки можно пользоваться стальной пластиной для зачистки электродов с плоской контактной поверхностью или куском резины - для зачистки электродов со сферической рабочей поверхностью. Электроды с плоской контактной поверхностью зачищаются одновременно или поочередно, со сферической - одновременно, при небольшом сжимающем усилии. После зачистки следы абразивной пыли удаляются сухой ветошью.

    Стремление механизировать процесс зачистки контактной поверхности электродов привело к созданию приспособлений с электрическим или пневматическим приводом. На рис. 2 показана пневматическая машинка для зачистки электродов.

    Рис. 2. Угловая пневматическая машинка для зачистки электродов

    Необходимость в зачистке контактной поверхности определяется визуально, по состоянию поверхности свариваемого изделия, но известны попытки определения момента зачистки при помощи специальных приспособлений.

    С помощью программного управления осуществляются не только установка свариваемого узла, сварочного тока и времени сварки, но и подается сигнал о необходимости зачистки электродов.

    Предлагается момент зачистки электродов определять по сравнению яркости светового луча, отраженного от контактной поверхности электрода, с яркостью луча, отраженного от поверхности эталона. Этот способ позволяет также прекращать процесс сварки под действием сигнала, величина которого возрастает при загрязнении рабочей поверхности электрода.

    Заправка рабочей части изношенного электрода с целью восстановления первоначальной формы может производиться несколькими способами. Наименее качественным является заправка мелким напильником. Рекомендуется для указанных целей применять специальные заправники. Пример ручного заправника приводится на рис. 3.

    Рис. 3. Ручной заправник электродов:

    1 - корпус; 2 - винты. 3 - резцы; 4 - ручка.

    Также рекомендуется применение специальных пневматических заправников, оснащенных торцовой фрезой, профиль режущей части которой соответствует профилю рабочей части электрода. Специальная фреза вставляется в патрон обычной ручной дрели и позволяет одновременно обрабатывать коническую и плоскую поверхность рабочей части электрода.

    Хорошим способом заправки электродов является заправка на токарных станках с проверкой размеров по шаблону.

    При большом количестве заправляемых электродов целесообразно применять специальные станки типа.

    Для быстрой смены электродов без повреждения рекомендуется применять электроды с лысками под ключ или пользоваться специальными съемниками.

    Простейший съемник (рис. 4) представляет собой винтовой зажим специальной конструкции.

    Рис. 4. Съемник простейшей конструкции:

    1 - корпус; 2 - плашки; 3 - зажимной винт.

    Восстановление изношенных электродов для точечной сварки ранее не практиковалось. За последнее время разработана технологию восстановления электродов точечных сварочных машин дуговой наплавкой. Твердость, электропроводность и стойкость восстановленных электродов соответствуют свойствам электродов, изготовленных из прутков. Применение метода восстановления электрода наплавкой только для одной многоточечной машины позволяет экономить до 500 кг бронзы в год.

    Резаки RX произведенные компанией SINTERLEGHE согласно патента EP2193003 позволяют вам:

    Затачивать электроды различной формы наконечника используя один резак

    Разделить стружку удаленного материала между верхним и нижним электродом

    Снизить затраты на расходные материалы, благодаря высокой прочности и твердости материала лезвий

    Можете использовать разработки SINTERLEGHE для работы с другими производителями заточных машин (см. картинку)

    В результате испытаний для подтверждения патента EP2193003 для резаков RX были достигнуты следующие результаты:

    Снижение затрат на закупку электродов на 50%

    Снижение кол-ва сварочных брызг

    Улучшение качества и вида сварочных точек

    Снижение кол-ва остановок линий для замены электродов

    Снижение кол-ва используемых моделей резаков

    Снижение затрат на резаки

    Снижение потребления электроэнергии

    РАЗМЕРЫ ЭЛЕТРОДОВ ПОСЛЕ ЗАТОЧКИ


    Резак RX SINTERLEGHE (патент EP 2193003) может применятся при использованиизаточных машин других производителей:

    Germany: Lutz - Brauer - AEG - Wedo

    Italy: Sinterleghe - Gem - Mi-Ba

    France: AMDP - Exrod

    USA: Semtorq, Stillwater

    Japan: Kyokuton - Obara

    Параметр

    RX SINTERLEGHE патент 2193003

    Резаки с одним лезвием

    Удаление материала электрода, при усили сжатия электродов 120даН

    0,037 мм/сек

    0,08 мм/сек

    Количество циклов для заточки электродов до их замены

    Время заточки

    Количество сварных точек за весь срок службы электродов

    Срок службы резка для заточки

    60 000 (12 мес)

    10 000 (3 мес)

    Время для замены электродов за 200 дней

    Экономия времени

    RX SINTERLEGHE патент 2193003

    Резаки с одним лезвием

    Стоимость двух электродов

    Стоимость электродов для сварки 10 000 точек

    Затраты в год на покупку новых электродов (2 000 000 точек/ 200 раб. дней)

    Ежегодные затраты на держатель лезвия

    Ежегодные затраты на лезвие

    (4штх50евро) = 200евро

    Ежегодные затраты на резак

    Ежегодные затраты на обслуживание и замену резаков

    12 евро (4 лез х 3 евро)

    Общие затраты на покупку электрдов и замену лезвий или резаков

    общие затраты на каждую сварочную машину за 8 лет

    Затраты на 10 сварочных машин

    Экономия