Физика электрический ток в природе. Я понимаю, как вырабатывается электричество. Но откуда берется электричество? Что такое ток, его природа? Типы электрических соединений

Электрический ток

Для того, чтобы заставить упорядоченно двигаться в одном направлении обилие свободных электронов, например, в нити накала электрической лампочки, нужно создать в проводнике электрическое поле, подключив, например, проводник к гальваническому элементу. Первый практический гальванический элемент был создан итальянским физиком Александром Вольтой .

Элемент состоит из цинковой и медной пластинок, называемых электродами, которые помещены в электролит - раствор соли или кислоты, например серной. В результате химической реакции, происходящей между электродами и электролитом, на цинковом электроде образуется избыток электронов, и он приобретает отрицательный электрический заряд, а на медном, наоборот,- недостаток электронов, и он приобретает положительный заряд. При этом между разноименными электрическими зарядами такого источника тока возникает электрическое поле, действует электродвижущая сила (сокращенно ЭДС) или напряжение. Как только проводник окажется подключенным к полюсам элемента или батареи, в нем возникнет электрическое поле, под действием которого электроны будут двигаться туда, где их недостаток, то есть от отрицательного полюса через проводник к положительному полюсу источника электрической энергии. Это и есть упорядоченное движение электронов в проводнике - электрический ток. Ток течет через проводник потому, что в получившейся цепи (положительный полюс элемента, проводники, отрицательный полюс элемента, электролит) действует электродвижущая сила.

Установлено, что электроны в проводнике движутся от отрицательного полюса (где избыток их) к положительному (где недостаток в них), однако и сейчас, как в прошлом веке, принято считать, что ток течет от плюса к минусу, т.е. в направлении, обратном движению электронов. Условное направление тока, кроме того, положено учеными в основу ряда правил, связанных с определением многих электрических явлений. В то же время такая условность никаких особых неудобств не создает, если твердо помнить, что на правление тока в проводниках противоположно направлению движения электронов. В тех же случаях, когда ток создается положительными электрическими зарядами, например в электролитах химических источников постоянного тока, ток «дырок» в полупроводниках, таких противоречий вообще нет, потому что направление движения положительных зарядов совпадает с направлением тока. Пока элемент или батарея действуют, во внешнем участке электрической цепи ток течет в одном и том же направлении. Такой ток называют постоянным.

Если полюсы элемента поменять местами, то изменится только направление движения электронов, но ток и в этом случае будет постоянным. А если полюсы источника тока менять местами очень быстро и к тому же ритмично? В этом случае электроны во внешнем участке цепи тоже будут попеременно изменять направление своего движения. Сначала они потекут в одном направлении, затем, когда полюсы поменяют местами - в другом, обратном предыдущему, потом вновь в прямом, опять в обратном и т. д. В цепи будет течь уже не постоянный, а переменный ток.

При переменном токе электроны в проводнике как бы колеблются из стороны в сторону. Поэтому переменный ток называют также электрическими колебаниями. Переменный ток выгодно отличается от постоянного тем, что он легко поддается преобразованию. Так, например, при помощи трансформатора можно повысить напряжение переменного тока или, наоборот, понизить его. Переменный ток, кроме того, можно выпрямить, то есть преобразовать в постоянный ток.

Этот вопрос, как капуста, его раскрываешь-раскрываешь, а до "фундаментальной" кочерыжки всё ещё далеко. Хоть вопрос, видимо, касается этой самой кочерыжки, придётся всё же попробовать одолеть всю капусту.

На самый поверхностный взгляд природа тока кажется простой: ток - это когда заряженные частицы движутся. (Если частица не движется, то тока нет, есть только электрическое поле.) Пытаясь постичь природу тока, и не зная из чего состоит ток, выбрали для тока направление, соответствующее направлению движения положительных частиц. Позже оказалось, что неотличимый, точно такой же по действию ток получается при движении отрицательных частиц в противоположном направлении. Эта симметрия является примечательной деталью природы тока.

В зависимости от того, где движутся частицы природа тока тоже различна. Отличается сам текущий материал:

  • В металлах есть свободные электроны;
  • В металлических и керамических сверхпроводниках - тоже электроны;
  • В жидкостях - ионы, которые образуются при протекании химических реакций или при воздействии приложенного электрического поля;
  • В газах - снова ионы, а также электроны;
  • А вот в полупроводниках электроны несвободны и могут двигаться "эстафетно". Т.е. двигаться может не электрон, а как бы место, где его нет - "дырка". Такая проводимость называется дырочной. На спайках разных полупроводников природа такого тока рождает эффекты, делающие возможной всю нашу радиоэлектронику.
    У тока две меры: сила тока и плотность тока. Между током зарядов и током, например, воды в шланге больше различий, чем сходства. Но такой взгляд на ток вполне продуктивен, для понимания природы последнего. Ток в проводнике это векторное поле скоростей частиц (если это частицы с одинаковым зарядом). Но мы обычно для описания тока не учитываем эти детали. Мы усредняем этот ток.

Если мы возьмём одну только частицу (естественно заряженную и движущуюся), то ток равный произведению заряда и мгновенной скорости в конкретный момент времени существует ровно там, где находится эта частица. Помните, как было в песне дуэта Иваси "Пора по пиву": "...если климат тяжёл и враждебен астрал, если поезд ушёл и все рельсы ЗА-БРАЛ..." :)

И вот мы пришли к той кочерыжке, которую упоминали вначале. Почему частица имеет заряд (с движением вроде всё ясно, а что же такое заряд)? Наиболее фундаментальные частицы (вот теперь уж точно:) вроде бы неделимые) несущие заряд - это электроны, позитроны (антиэлектроны) и кварки. Отдельно взятый кварк вытащить и исследовать невозможно из-за конфайнмента, с электроном вроде проще, но тоже пока не очень-то ясно. На данный момент видно, что ток квантуется: не наблюдается зарядов меньше заряда электрона (кварки наблюдаются только в виде адронов с совокупным зарядом таким же или нулевым). Электрическое поле отдельно от заряженной частицы может существовать только в связке с магнитным полем, как электромагнитная волна, квантом которой является фотон. Возможно, какие-то интерпретации природы электрического заряда лежат в сфере квантовой физики. Например, предсказанное ею и обнаруженное сравнительно недавно поле Хиггса (есть бозон - есть и поле) объясняет массу ряда частиц, а масса - это мера того, как частица откликается на гравитационное поле. Может быть и с зарядом, как с мерой отклика на электрическое поле, обнаружится какая-то похожая история. Почему есть масса и почему есть заряд - это в чём-то родственные вопросы.

Многое известно о природе электрического тока, но самое главное пока нет.

Металлы – хорошие проводники электрического тока. Проводимость в металлах обусловлена наличием в них свободных электронов, которые сравнительно легко отрываются от атомов. Образуя положительный ион и свободный электрон.

В отсутствие электрического поля электроны движутся беспорядочно, участвуя в тепловом (хаотическом) движении.

Под действием электрического поля электроны начинают упорядоченно перемещаться между ионами, находящимися в узлах кристаллической решетки, со средней скоростью порядка 10 -4 м/с, образуя электрический ток.

Экспериментальное доказательство того, что проводимость металлов обусловлена движением свободных электронов, было дано в опытах Л.И. Мандельштама и Н.Д. Папалекси в 1912г (результаты не были опубликованы), а также Т. Стюарта и Р. Толмена в 1916 г.

Идея опытов : если резко тормозить движущийся кусок металла, то находящиеся в нем свободные заряды, двигаясь по инерции, будут скапливаться у переднего его конца, и между концами проводника возникает разность потенциалов.

Опыт Мандельштама и Папалекси

Катушка, соединенная с телефоном, приводилась в колебательное движение вокруг своей оси. Благодаря инерции свободный зарядов на концах катушки возникала переменная разность потенциалов, и телефон издавал звук.

Это были лишь качественные опыты. Никакие измерения и количественные расчеты в этих опытах не были произведены.

Опыт Стюарта и Толмена

Катушка большого диаметра с намотанным на ней металлическим проводом приводилась в быстрое вращение и затем резко тормозилась. При торможении катушки свободные заряды в проводнике продолжали некоторое время двигаться по инерции. Вследствие движения зарядов относительно проводника в катушке возникал кратковременный электрический ток, который регистрировался гальванометром присоединённым к концам проводника с помощью скользящих контактов.

Направление тока свидетельствовало о том, что он обусловлен движением отрицательно заряженных частиц.

Измеряя заряд, проходящий через гальванометр за все время существования тока в цепи, удалось определить отношение q 0 /m. Оно оказалось равным 1,8*1011Кл/кг. Это значение совпадает со значением аналогичного отношения для электрона, найденным из других опытов.

Таким образом было экспериментально установлено, что носителями электрического тока в металлах являются свободные электроны.

Зависимость сопротивления проводника R от температуры :

При нагревании размеры проводника меняются мало, а в основном меняется удельное сопротивление.
Удельное сопротивление проводника зависит от температуры:

где ро - удельное сопротивление при 0 градусов, t - температура, - температурный коэффициент сопротивления (т.е. относительное изменение удельного сопротивления проводника при нагревании его на один градус)



Для металлов и сплавов
Обычно для чистых металлов принимается

Таким образом, для металлических проводников с ростом температуры
увеличивается удельное сопротивление, увеличивается сопротивление проводника и уменьшается эл.ток в цепи.

Явление сверхпроводимости

Низкотемпературная сверхпроводимость:
наблюдается при сверхнизких температурах (ниже 25 К) во многих металлах и сплавах; при таких температурах удельное сопротивление этих веществ становится ничтожно малым.

В 1986 г. открыта (для металлокерамики) высокотемпературная сверхпроводимость (при 100 К).


Трудность достижения сверхпроводимости:
- необходимость сильного охлаждения вещества

Область применения:
- получение сильных магнитных полей;
- мощные электромагниты со сверхпроводящей обмоткой в ускорителях и генераторах.

ОСНОВЫ ЭЛЕКТРОТЕХНИКИ.

Электротехника - это область техники, связанная с получением, распределением, преобразованием и использованием электрической энергии, а также - c разработкой, эксплуатацией и оптимизацией электронных компонентов, электронных схем и устройств, оборудования и технических систем. Под электротехникой также понимают техническую науку, которая изучает применение электрических и магнитных явлений для практического использования.

Основное отличие электротехники от электроники заключается в том, что электротехника изучает проблемы, связанные с силовыми крупногабаритными электронными компонентами: линии электропередачи, электрические приводы, в то время, как в электронике основными компонентами являются компьютеры и другие устройства на базе интегральных схем, а также сами интегральные схемы.

Природа электричества.

В природе все вещества состоят из молекул. Молекула, в свою очередь, состоит из атомов, атом – из ядра, а ядро - из положительных протонов и не имеющих заряда нейтронов. Вокруг ядра на орбитах вращаются электроны. Ядро имеет положительный заряд, а электроны – отрицательный:

Атом в целом - электрически нейтрален, но при воздействии на него (например, при нагревании) он приобретает дополнительную энергию, в результате чего разрывается связь между ядром и наиболее удалённым электроном. Этот электрон уходит со своей орбиты и весь атом становится положительньно заряженным ионом. Оторвавшийся электрон либо начинает хаотическое движение (так называемый свободный электрон ), либо присоединяется к другому атому, превращая его в отрицательно заряженый ион.

Процесс превращения нейтральных атомов в электрически заряженные частицы - ионы - называют ионизацией . Ионизация может возникнуть только при сообщении атому определенного количества энергии: в виде тепла, путем бомбардировки его какими-либо частицами, например, при воздействии внешнего электрического поля.

В природе существуют вещества, имеющие или не имеющие свободных электронов. В зависимости от этого они делятся на проводники, полупроводники и диэлектрики.

· Проводники делятся на 2 класса:

    • 1 класс - металлы и сплавы
    • 2 класс - водные растворы кислот, солей и щелочей.
  • Полупроводники пропускают ток только в одном направлении.
  • Диэлектрики не имеют свободных электронов, поэтому они не проводят электрический ток.

Следует отметить, что в технике, кроме металлических проводников, используют и неметаллические. К таким проводникам относится, например, уголь, из которого изготовляют щетки электрических машин, электроды для прожекторов и пр. Проводниками электрического тока являются толща земли, живые ткани растений, животных и человека. Проводят электрический ток сырое дерево и многие другие изоляционные материалы во влажном состоянии (из-за содержания в них проводников второго класса).

Если к концам проводника подсоединить источник электродвижущей силы - ЭДС (например, батарею), то движение свободных электронов в проводнике станет упорядоченным, то есть, по проводнику потечёт электрический ток. Это упорядоченное движение электронов называется электрически током.

Количество свободных электронов характеризует способность материала проводить электрический ток. Количество электронов, равное 6,24 10 18 принято считать, как 1 Кулон (Кл ). При силе тока 1А за 1с в проводнике проходит количество электричества, равное 1Кл .

Теперь мы располагаем всем необходимым, чтобы ответить на вопрос: что такое электрический ток? Электрический ток представляет собою движение электрических зарядов. Точными опытами установлено, что всякий движущийся электрический заряд производит такое же магнитное действие, как и электрический ток. В различных проводниках ток создается движением различных заряженных частиц. Электрический ток в металлах. Атомы металлов обладают способностью легко отдавать один или несколько электронов. В любом куске металла нейтральных атомов почти нет, а имеются положительные ионы и оторвавшиеся от атомов электроны, которые называются свободными. Свободные электроны беспорядочно движутся в пространстве между ионами с различными, но весьма большими скоростями.

На короткое время они могут притягиваться каким-нибудь ионом, потом снова отрываются от него и т. д. При нагревании металла скорость беспорядочного движения свободных электронов увеличивается. Если металлический проводник присоединить к полюсам источника тока, то электрическое поле, которое существует между полюсами источника, проникнет в проводник; на все свободные электроны, имеющиеся в проводнике, будут действовать электрические силы: электроны будут отталкиваться от отрицательного полюса и притягиваться к положительному. Вследствие этого свободные электроны, продолжая свое беспорядочное движение, начнут медленно перемещаться все в одном направлении вдоль проводника. Такое перемещение называется упорядоченным.

Электри́ческий ток - упорядоченное нескомпенсированное движение свободных электрически заряженных частиц, например, под воздействием электрического поля.

Силой тока называется физическая величина, равная отношению количества заряда, прошедшего за некоторое время через поперечное сечение проводника, к величине этого промежутка времени.

Сила тока в системе СИ измеряется в Амперах.

По закону Ома сила тока I для участка цепи прямо пропорциональна приложенному напряжению U к участку цепи и обратно пропорциональна сопротивлению R проводника этого участка цепи:

Постоя́нный ток , электрический ток, параметры, свойства, и направление которого не изменяются (в различных смыслах) со временем.

Простейшим источником постоянного тока является химический источник (гальванический элемент или аккумулятор), поскольку полярность такого источника не может самопроизвольно измениться.

3) Электростатический потенциа́л скалярная энергетическая характеристика электростатического поля, характеризующая потенциальную энергию поля, которой обладает единичный заряд, помещённый в данную точку поля. Единицей измерения потенциала является единица измерения работы, деленная на единицу измерения заряда

Электростатический потенциал равен отношению потенциальной энергии взаимодействия заряда с полем к величине этого заряда:

В СИ за единицу разности потенциалов принимают вольт (В).

Мерой изменения энергии при взаимодействиях тел является работа. При перемещении электрического заряда q работа А сил электростатического поля равна изменению потенциальной энергии заряда, взятому с противоположным знаком, поэтому получаем

Так как работа сил электростатического поля при перемещении заряда из одной точки пространства в другую не зависит от траектории движения заряда между этими точками, то разность потенциалов двух точек электрического поля является величиной» не зависящей от траектории движения заряда. Разность потенциалов, следовательно, может служить энергетической характеристикой электростатического поля.

Напряжение - разность значений потенциала в начальной и конечнойточках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.

Разность потенциалов (напряжение) не зависит от выбора

системы координат!

Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля - физическая величина, значение которой равно отношению работы электрического поля, совершаемой при переносе пробного электрического заряда из точки A в точку B , к величине пробного заряда.

4)) Электрическая цепь постоянного тока. Элементы электрической цепи. Линейные и нелинейные электрические цепи. Разветвлённая и неразветвлённая электрическая цепь постоянного тока. Элементы электрической цепи: ветвь, контур, узел.

Электрической цепью называется совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электрическом токе, ЭДС (электродвижущая сила) и электрическом напряжении.

Все устройства и объекты, входящие в состав электрической цепи, могут быть разделены на три группы:

1) Источники электрической энергии (питания).

Общим свойством всех источников питания является преобразование какого-либо вида энергии в электрическую. Источники, в которых происходит преобразование неэлектрической энергии в электрическую, называются первичными источниками. Вторичные источники – это такие источники, у которых и на входе, и на выходе – электрическая энергия (например, выпрямительные устройства).

2) Потребители электрической энергии.

Общим свойством всех потребителей является преобразование электроэнергии в другие виды энергии (например, нагревательный прибор). Иногда потребители называют нагрузкой.

3) Вспомогательные элементы цепи: соединительные провода, коммутационная аппаратура, аппаратура защиты, измерительные приборы и т.д., без которых реальная цепь не работает.

Все элементы цепи охвачены одним электромагнитным процессом.

Линейные и нелинейные электрические цепи - Изображение электрической цепи с помощью условных знаков называют электрической схемой (рис. 2.1, а). Зависимость тока, протекающего по сопротивлению, от напряжения на этом сопротивлении называют вольт-амперной характеристикой (ВАХ). По оси абсцисс на графике обычно откладывают напряжение, а по оси ординат - ток. Сопротивления, ВАХ которых являются прямыми линиями (рис. 2.1, б), называют линейными, электрические цепи только с линейными сопротивлениями - линейными электрическими цепями. Сопротивления, ВАХ которых не являются прямыми линиями (рис. 2.1, в), то есть они нелинейны, называют нелинейными, а электрические цепи с нелинейными сопротивлениями - нелинейными электрическими цепями.

Примерами линейных (как правило, в очень хорошем приближении) цепей являются цепи, содержащие только резисторы, конденсаторы и катушки индуктивности. Также как линейные в определенных диапазонах могут рассматриваться цепи, содержащие линейные усилители и некоторыми другими электронными устройствами, содержащими активные элементы, но имеющими в определенных диапазонах достаточно линейные характеристики.

Электрические цепи подразделяют на неразветвленные и разветвленные . На рисунке 1 представлена схема простейшей неразветвленной цепи. Во всех элементах ее течет один и тот же ток. Простейшая разветвленная цепь изображена на рисунке 2. В ней имеются три ветви и два узла. В каждой ветви течет свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течет одинаковый ток) и заключенный между двумя узлами. В свою очередь узел есть точка цепи, в которой сходятся не менее трех ветвей. Если в месте пересечения двух линий на электрической схеме поставлена точка (рисунок 2), то в этом месте есть электрическое соединение двух линий, в противном случае его нет. Узел, в котором сходятся две ветви, одна из которых является продолжением другой, называют устранимым или вырожденным узлом

Элементами электрической цепи являются источники электрической энергии, активные и реактивные сопротивления

Для описания топологических свойств электрической цепи используются топологические понятия, основными из которых являются узел, ветвь и контур.

Узлом- электрической цепи называют место (точку) соединения трех и более элементов.

Ветвью - называют совокупность связанных элементов электрической цепи между двумя узлами.

Ветвь по определению содержит элементы, поэтому вертикальные связи ветвями не являются. Не является ветвью и диагональная связь.

Контуром -(замкнутым контуром) называют совокупность ветвей, образующих путь, при перемещении вдоль которого мы можем вернуться в исходную точку, не проходя более одного раза по каждой ветви и по каждому узлу.

По определению различные контуры электрической цепи должны отличаться друг от друга по крайней мере одной ветвью.

Количество контуров, которые могут быть образованы для данной электрической цепи ограничено и определено.

5) Источники электрической энергии в цепи постоянного тока

В линейных электрических цепях в качестве источников энергии различают источники Э.Д.С. и источники тока .


Идеальный источник Э.Д.С. имеет неизменное Э.Д.С. и напряжение на выходных зажимах при всех токах нагрузки. У реального источника – Э.Д.С. и напряжение на зажимах изменяются при изменении нагрузки (например, вследствие падения напряжения в обмотках генератора). В электрической схеме это учитывается последовательным включением резистора r 0 . Идеальный источник напряжения изображен на рис. 1.3.

Напряжение U ab зависит от тока приёмника и равно разности между Э.Д.С. генератора и падением напряжения на его внутреннем сопротивлении r 0:


. Ток, протекающий по цепи, также зависит от сопротивления нагрузки:

Если принять Э.Д.С. источника его внутреннее сопротивление и сопротивление приёмника не зависящими от тока и напряжения, то внешняя характеристика источника энергии U 12 = f(I) и ВАХ приёмника U ab = f(I) будут линейными (рис. 1.4).

По рис. 1.4 видно, что по мере нарастания тока в цепи напряжение на нагрузке возрастает, а, следовательно, уменьшается напряжение на выходных зажимах источника.

Источник тока характеризуется бесконечным внутренним сопротивлением и бесконечным значением Э.Д.С., при этом выполняется равенство:

Если r 0 >>R H и I 0 <идеальным источником тока