Обозначение условной вероятности. Условная вероятность. Теорема Байеса. Вероятность противоположных событий

Определение 1. Событие А называется зависимым от события В, если вероятность появления события А зависит от того, произошло или не произошло событие В. Вероятность того, что произошло событие А при условии, что произошло событие В, будем обозначать и называть условной вероятностью события А при условии В.

Пример 1. В урне находится 3 белых шара и 2 черных. Из урны вынимается один шар (первое вынимание), а затем второй (второе вынимание). Событие В - появление белого шара при первом вынимании. Событие А - появление белого шара при втором вынимании.

Очевидно, что вероятность события А, если событие В произошло, будет

Вероятность события Л при условии, что событие В не произошло (при первом вынимании появился черный шар), будет

Видим, что

Теорема 1. Вероятность совмещения двух событий равняется произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т. е.

Доказательство. Доказательство приведем для событий, которые сводятся к схеме урн (т. е. в случае, когда применимо классическое определение вероятности).

Пусть в урне шаров, при этом белых, черных. Пусть среди белых шаров шаров с отметкой «звездочка», остальные чисто белые (рис. 408).

Из урны вынимается один шар. Какова вероятность события вынуть белый шар с отметкой «звездочка»?

Пусть В - событие, состоящее в появлении (белого шара, А - событие, состоящее в появлении шара с отметкой «звездочка». Очевидно,

Вероятность появления белого шара со «звездочкой при условии, что появился белый шар, будет

Вероятность появления белого шара со «звездочкой» есть Р (А и В). Очевидно,

Подставляя в (5) левые части выражений (2), (3) и (4), получаем

Равенство (1) доказано.

Если рассматриваемые события не укладываются в классическую - схему, то формула (1) служит для определения условной вероятности. А именно, условная вероятность события А при условии осуществления события В опрёделяется с помощью

Замечание 1. Применим последнюю формулу к выражению :

В равенствах (1) и (6) левые части равны, так как это одна и та же вероятность, следовательно, равны и правые. Поэтому можем написать равенство

Пример 2. Для случая примера 1, приведенного в начале этого параграфа, имеем По формуле (1) получаем Вероятность Р(А и В) легко вычисляется и непосредственно.

Пример 3. Вероятность изготовления годного изделия данным станком равна 0,9. Вероятность появления изделия 1-го сорта среди годных изделии есть 0,8. Определить вероятность изготовления изделия 1-го сорта данным станком.

Решение. Событие В - изготовление годного изделия данным станком, событие А - появление изделия 1-го сорта. Здесь Подставляя в формулу (1), получаем искомую вероятность

Теорема 2. Если событие А может осуществиться только при выполнении одного из событий которые образуют полную группу несовместных событий, то вероятность события А вычисляется по формуле

Формулд (8) называется формулой полной вероятности. Доказательство. Событие А может произойти при выполнении любого из совмещенных событий

Следовательно, по теореме о сложение вероятностей получаем

Заменяя слагаемые правой части по формуле (1), получим равенство (8).

Пример 4. По цели произведено три последовательных выстрела. Вероятность попадания при первом выстреле при втором при третьем При одном попадании вероятность поражения цели при двух попаданиях , при трех попаданиях Определить вероятность пфаженйя цели при трех выстрелах (событие А).

Нередко в жизни мы сталкиваемся с тем, что нужно оценить шансы наступления какого-либо события. Стоит ли покупать лотерейный билет или нет, каков будет пол третьего ребенка в семье, будет ли завтра ясная погода или снова пойдет дождь - таких примеров можно привести бесчисленное множество. В самом простом случае следует разделить число благоприятных исходов на общее число событий. Если в лотерее 10 билетов выигрышных, а всего их 50, то шансы получить приз равны 10/50 = 0,2, то есть 20 против 100. А как поступать в том случае, если есть несколько событий, и они тесно связаны между собой? В этом случае нас будет интересовать уже не простая, а условная вероятность. Что это за величина и как ее можно посчитать - об этом как раз и будет рассказано в нашей статье.

Понятие

Условная вероятность - это шансы наступления определенного события при условии, что другое связанное с ним событие уже произошло. Рассмотрим простой пример с бросанием монетки. Если жеребьевки еще не было, то шансы выпадения орла или решки будут одинаковыми. Но если раз пять подряд монетка ложилась гербом вверх, то согласитесь ожидать 6-го, 7-го, а тем более 10-го повторения такого исхода будет нелогично. С каждым повторным разом выпадения орла, шансы появления решки растут и рано или поздно она-таки выпадет.

Формула условной вероятности

Давайте теперь разберемся с тем, как эта величина рассчитывается. Обозначим первое событие через В, а второе через А. Если шансы наступления В отличны от нуля, то тогда будет справедливым следующее равенство:

Р (А|В) = Р (АВ) / Р (В), где:

  • Р (А|В) - условная вероятность итога А;
  • Р (АВ) - вероятность совместного появления событий А и В;
  • Р (В) - вероятность события В.

Слегка преобразовав данное соотношение получим Р (АВ) = Р(А|В) * Р (В). А если применить то можно вывести формулу произведения и использовать ее при произвольном числе событий:

Р (А 1 , А 2 , А 3 ,…А п) = Р (А 1 |А 2 …А п)*Р(А 2 |А 3 …А п) * Р (А 3 |А 4 …А п)… Р (А п-1 |А п) * Р (А п).

Практика

Чтобы было легче разобраться с тем, как рассчитывается условная рассмотрим парочку примеров. Предположим имеется ваза, в которой находятся 8 шоколадных конфет и 7 мятных. По размерам они одинаковы и наугад последовательно вытаскиваются две из них. Какие будут шансы того, что обе из них окажутся шоколадными? Введем обозначения. Пусть итог А означает, что первая конфета шоколадная, итог В - вторая конфета шоколадная. Тогда получится следующее:

Р (А) = Р (В) = 8 / 15,

Р (А|В) = Р (В|А) = 7 / 14 = 1/2,

Р (АВ) = 8 /15 х 1/2 = 4/15 ≈ 0,27

Рассмотрим еще один случай. Предположим, есть двухдетная семья и нам известно, что, по крайней мере, один ребенок является девочкой.

Какова условная вероятность того, что мальчиков у этих родителей пока нет? Как и в предыдущем случае, начнем с обозначений. Пусть Р (В) - вероятность того, что в семье есть хотя бы одна девочка, Р (А|В) - вероятность того, что второй ребенок тоже девочка, Р (АВ) - шансы того, что в семье две девочки. Теперь произведем расчёты. Всего может быть 4 разных комбинаций пола детей и при этом лишь в одном случае (когда в семье два мальчика), девочки среди детей не будет. Поэтому вероятность Р (В) = 3/4, а Р (АВ) = 1/4. Тогда следуя нашей формуле получим:

Р (А|В) = 1/4: 3/4 = 1/3.

Интерпретировать результат можно так: если бы нам не было б известно о поле одного из детей, то шансы двух девочек были бы 25 против 100. Но поскольку мы знаем, что один ребенок девочка, вероятность того, что в семье мальчиков нет, возрастает до одной третьей.

Условной вероятностью события A при выполнении события B называется отношение Здесь предполагается, что .

В качестве разумного обоснования этого определения отметим, что при наступлении события B оно начинает играть роль достоверного события, поэтому надо потребовать, чтобы . Роль события A играет AB, поэтому должна быть пропорциональна . (Из определения следует, что коэффициент пропорциональности равен .)

Теперь введем понятие независимости событий.

Это означает: оттого что произошло событие B , вероятность события A не изменилась.

С учетом определения условной вероятности, это определение сведется к соотношению . Здесь уже нет необходимости требовать выполнения условия . Таким образом, приходим к окончательному определению.

События A и B называются независимыми, если P (AB ) = P (A )P (B ).

Последнее соотношение обычно и принимают за определение независимости двух событий.

Несколько событий называются независимыми в совокупности, если подобные соотношения выполняются для любого подмножества рассматриваемых событий. Так, например, три события A, B и C называются независимыми в совокупности, если выполняются следующие четыре соотношения:

Приведем ряд задач на условную вероятность и независимость событий и их решения.

Задача 21. Из полной колоды из 36 карт вытаскивают одну карту. Событие A – карта красная, B – карта туз. Будут ли они независимы?

Решение. Проведя вычисления согласно классическому определению вероятности, получим, что . Это означает, что события A и B независимы.

Задача 22 . Решить ту же задачу для колоды, из которой удалена пиковая дама.

Решение . . Независимости нет.

Задача 23. Двое поочередно бросают монету. Выигрывает тот, у которого первым выпадет герб. Найти вероятности выигрыша для обоих игроков.

Решение. Можно считать, что элементарные события – это конечные последовательности вида (0, 0, 1,…, 0, 1). Для последовательности длины соответствующее элементарное событие имеет вероятность Игрок, начинающий бросать монету первым, выигрывает, если реализуется элементарное событие , состоящее из нечетного числа нулей и единиц. Поэтому вероятность его выигрыша равна

Выигрыш второго игрока соответствует четному числу нулей и единиц. Он равен

Из решения следует, что игра заканчивается за конечное время с вероятностью 1 (так как ).

Задача 24. Для того чтобы разрушить мост, нужно попадание не менее 2 бомб. Сбросили 3 бомбы. Вероятности попадания бомб равны соответственно 0, 1; 0, 3; 0, 4. Найти вероятность разрушения моста.

Решение. Пусть события A, B, C состоят в попадании 1-й, 2-й, 3-й бомбы соответственно. Тогда разрушение моста происходит только при реализации события В силу того что слагаемые в этой формуле попарно несовместны, а сомножители в слагаемых независимы, искомая вероятность равна

0,1∙0,3∙0,4 + 0,1∙0,3∙0,6 + 0,1∙0,7∙0,4 + 0,9∙0,3∙0,4 = 0,166.

Задача 25. К одному и тому же причалу должны пришвартоваться два грузовых судна. Известно, что каждое из них может с равной вероятностью подойти в любой момент фиксированных суток и должно разгружаться 8 ч. Найти вероятность того, что судну, пришедшему вторым, не придется дожидаться, пока закончит разгрузку первое судно.

Решение. Будем время измерять в сутках и долях суток. Тогдаэлементарные события – это пары чисел , заполняющие единичный квадрат, где x – время прихода первого судна, y – время прихода второго судна. Все точки квадрата равновероятны. Это означает, что вероятность любого события (т. е. множества из единичного квадрата) равна площади области, соответствующей этому событию. Событие A состоит из точек единичного квадрата, для которых выполняется неравенство . Это неравенство соответствует тому, что судно, пришедшее первым, успеет разгрузиться к моменту прихода второго судна. Множество этих точек образует два прямоугольных равнобедренных треугольника со стороной 2/3. Суммарная площадь этих треугольников равна 4/9. Таким образом, .

Задача 26. На экзамене по теории вероятностей было 34билета. Студент дважды извлекает по одному билету из предложенных билетов (не возвращая их). Студент подготовился лишь по 30-ти билетам? Какова вероятность того, что он сдаст экзамен, выбрав в первый раз «неудачный » билет?

Решение. Случайный выбор состоит в том, что два раза подряд извлекают по одному билету, причем вытянутый в первый раз билет назад не возвращается. Пусть событие В состоит в том, что первым вынут «неудачный» билет, а событие А состоит в том, что вторым вынут «удачный » билет. Очевидно, что события А и В зависимы, так как извлеченный в первый раз билет не возвращается в число всех билетов. Требуется найти вероятность события АВ .

По формуле условной вероятности ; ; , поэтому .

Пусть А и В – два события, рассматриваемые в данном испытании. При этом наступление одного из событий может влиять на возможность наступления другого. Например, наступление события А может влиять на событие В или наоборот. Для учёта такой зависимости одних событий от других вводится понятие условной вероятности.

Определение. Если вероятность события В находится при условии, что событие А произошло, то получаемая вероятность события В называется условной вероятностью события В . Для обозначения такой условной вероятности используются символы: р А (В ) или р (В / А ).

Замечание 2 . В отличие от условной вероятности, рассматривается и “безусловная” вероятность, когда какие-либо условия наступления некоторого события В отсутствуют.

Пример . В урне 5 шаров, среди которых 3 красных и 2 синих. Поочерёдно из неё извлекают по одному шару с возвратом и без возврата. Найти условную вероятность извлечения во второй раз красного шара при условии, что в первый раз извлечён: а) красный шар; б) синий шар.

Пусть событие А – извлечение красного шара в первый раз, а событие В – извлечение красного шара во второй раз. Очевидно, что р (А ) = 3 / 5; тогда в случае, когда вынутый 1-й раз шар возвращается в урну, р (В )=3/5. В случае же когда вынутый шар не возвращается, вероятность извлечения красного шара р (В ) зависит от того, какой шар был извлечён в первый раз – красный (событие А ) или синий (событие ). Тогда в первом случае р А (В ) = 2 / 4, а во втором (В ) = 3 / 4.

Теорема умножения вероятностей событий, одно из которых совершается при условии совершения другого

Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, найденную в предположении, что первое событие произошло:

р (А ∙ В ) = р (А ) ∙ р А (В ) . (1.7)

Доказательство. Действительно, пусть n – общее число равновозможных и несовместных (элементарных) исходов испытания. И пусть n 1 – число исходов, благоприятствующих событию А , которое наступает вначале, а m – число исходов, в которых наступает событие В в предположении, что событие А наступило. Таким образом, m – это число исходов, благоприятствующих событию В. Тогда получим:

Т.е. вероятность произведения нескольких событий равна произведению вероятности одного из этих событий на условные вероятности других, причём условная вероятность каждого последующего события вычисляется в предположении, что все предыдущие события произошли.

Пример. В команде из 10 спортсменов 4 мастера спорта. По жеребьёвке из команды выбирают 3-х спортсменов. Какова вероятность того, что все выбранные спортсмены – мастера спорта?

Решение. Приведём задачу к “урновой” модели, т.е. будем считать, что в урне, содержащей 10 шаров, имеется 4 красных шара и 6 белых. Из этой урны наудачу извлекаются 3 шара (выборка S = 3). Пусть событие А состоит в извлечении 3-х шаров. Задачу можно решить двумя способами: по классической схеме и по формуле (1.9).

Первый способ, основанный на формуле комбинаторики:

Второй способ (по формуле (1.9)). Из урны последовательно без возвращения извлекаются 3 шара. Пусть А 1 – первый извлечённый шар красный, А 2 – второй извлечённый шар красный, А 3 – третий извлечённый шар красный. Пусть также событие А означает, что все 3 извлечённых шара – красные. Тогда: А = А 1 ∙ (А 2 / А 1) ∙ А 3 / (А 1 ∙ А 2), т.е.

Пример. Пусть из совокупности карточек а, а, р, б, о, т последовательно извлекаются карточки по одной. Какова вероятность получения слова “работа ” при последовательном складывании их в одну строку слева направо?

Пусть В – событие, при котором получается заявленное слово. Тогда по формуле (1.9) получим:

р (В ) = 1/6 ∙ 2/5 ∙ 1/4 ∙ 1/3 ∙ 1/2 ∙ 1/1 = 1/360.

Теорема умножения вероятностей приобретает наиболее простой вид, когда произведение образуется независимыми друг от друга событиями.

Определение. Событие В называется независимым от события А , если его вероятность не меняется от того, произошло событие А или нет. Два события называются независимыми (зависимыми), если появление одного из них не изменяет (изменяет) вероятность появления другого. Таким образом, для независимых событий р(В/ A ) = р (В ) или = р (В ), а для зависимых событий р (В/ A )

Событие. Пространство элементарных событий. Достоверное событие, невозможное событие. Совместные, несовместные события. Равновозможные события. Полная группа событий. Операции над событиями.

Событие - это явление, о котором можно сказать, что оно происходит или не происходит , в зависимости от природы самого события.

Под элементарными событиями , связанными с определенным испытанием, понимают все неразложимые результаты этого испытания. Каждое событие, которое может наступить в результате этого испытания, можно рассматривать как некоторое множество элементарных событий.

Пространством элементарных событий называется произвольное множество (конечное или бесконечное). Его элементы - точки (элементарные события). Подмножества пространства элементарных событий называются событиями.

Достоверным событием называется событие, которое вследствие данного испытания обязательно произойдет; (обозначается E).

Невозможным событием называется такое событие, которое вследствие данного испытания не может произойти ; (обозначается U). Например, появление одного из шести очков во время одного броска игрального кубика - достоверное событие, а появление 8 очков - невозможное.

Два события называются совместными (совместимыми) в данном опыте, если появление одного из них не исключает появления другого.

Два события называются несовместными (несовместимыми) в данном опыте, если они не могут произойти вместе при одном и том же испытании. Несколько событий называются несовместными, если они попарно несовместны.

Начало формы

Конец формы

Событие - это явление, о котором можно сказать, что оно происходит или не происходит , в зависимости от природы самого события. События обозначаются большими буквами латинского алфавита A, B, C,... Любое событие происходит вследствие испытания . Например, подбрасываем монету - испытание, появление герба - событие; достаем лампу из коробки - испытание, она бракованная - событие; вынимаем наугад шарик из ящика - испытание, шарик оказался черного цвета - событие. Случайным событием называется событие, которое может произойти или не произойти во время данного испытания. Например, вынимая наугад одну карту из колоды, вы взяли туз; стреляя, стрелок попадает в цель. Теория вероятности изучает только массовые случайные события. Достоверным событием называется событие, которое вследствие данного испытания обязательно произойдет; (обозначается E). Невозможным событием называется такое событие, которое вследствие данного испытания не может произойти ; (обозначается U). Например, появление одного из шести очков во время одного броска игрального кубика - достоверное событие, а появление 8 очков - невозможное. Равновозможные события - это такие события, каждое из которых не имеет никаких преимуществ в появлении чаще другого во время многочисленных испытаний, которые проводятся с одинаковыми условиями. Попарно несовместимые события - это события, два из которых не могут произойти вместе. Вероятность случайного события - это отношение числа событий, которые благоприятствуют этому событию, к общему числу всех равновозможных несовместимых событий: P(A) = где A - событие; P(A) - вероятность события; N - общее число равновозможных и несовместимых событий; N(A) - число событий, которые благоприятствуют событию A. Это - классическое определение вероятности случайного события. Классическое определение вероятности имеет место для испытаний с конечным числом равновозможных результатов испытания. Пусть сделано n выстрелов по мишени, из которых оказалось m попаданий. Отношение W(A) = называется относительной статистической частотой наступления события A. Следовательно, W(A) - статистическая частота попадания.

При проведении серии выстрелов (табл.1) статистическая частота будет колебаться около определенного постоянного числа. Это число целесообразно принять за оценку вероятности попадания.

Вероятностью события A называется то неизвестное число P, около которого собираются значения статистических частот наступления события A при возрастании числа испытаний.

Это - статистическое обозначение вероятности случайного события.

Операции над событиями
Под элементарными событиями, связанными с определенным испытанием, понимают все неразложимые результаты этого испытания. Каждое событие, которое может наступить в результате этого испытания, можно рассматривать как некоторое множество элементарных событий. Пространством элементарных событий называется произвольное множество (конечное или бесконечное). Его элементы - точки (элементарные события). Подмножества пространства элементарных событий называются событиями. Все известные отношения и операции над множествами переносятся на события. Говорят, что событие A является частным случаем события B (или B является результатом A), если множество A является подмножеством B. Обозначают это отношение так же, как для множеств: A ⊂ B или B ⊃ A. Таким образом, отношение A ⊂ B означает, что все элементарные события, входящие в A, входят также в B, то есть при наступлении события A наступает также событие B. При этом, если A ⊂ B и B ⊂ A, то A = B. Событие A, которое происходит тогда и только тогда, когда событие A не происходит, называется противоположным событию A. Поскольку в каждом испытании происходит одно и только одно из событий - A или A, то P(A) + P(A) = 1, или P(A) = 1 − P(A). Объединением или суммой событий A и B называется событие C, которое происходит тогда и только тогда, когда или происходит событие A, или происходит событие B, или происходят A и B одновременно. Это обозначается C = A ∪ B или C = A + B. Объединением событий A 1 , A 2 , ... A n называется событие, которое происходит тогда и только тогда, когда происходит хотя бы одно из данных событий. Обозначается объединение событий A 1 ∪ A 2 ∪ ... ∪ A n , или A k , или A 1 + A 2 + ... + A n . Пересечением или произведением событий A и B называется событие D, которое происходит тогда и только тогда, когда события A и B происходят одновременно, и обозначается D = A ∩ B или D = A × B. Совмещением или произведением событий A 1 , A 2 , ... A n называется событие, которое происходит тогда и только тогда, когда происходит и событие A 1 , и событие A 2 , и т.д., и событие A n . Обозначается совмещение так: A 1 ∩ A 2 ∩ ... ∩ A n или A k , или A 1 × A 2 × ... × A n .

Тема № 2 . Аксиоматическое определение вероятности. Классическое, статистическое, геометрическое определение вероятности события. Свойства вероятности. Теоремы сложения и умножения вероятностей. Независимые события. Условная вероятность. Вероятность наступления хотя бы одного из событий. Формула полной вероятности. Формула Байеса

Численная мера степени объективной возможности наступления события называется вероятностью события. Это определение, качественно отражающее понятие вероятности события, не является математическим. Чтобы оно стало таким, необходимо определить его качественно.

Согласно классическому определению вероятность события А равна отношению числа случаев, благоприятствующих ему, к общему числу случаев, то есть:

Где P(A) – вероятность события А.

Число случаев благоприятствующих событию А

Общее число случаев.

Статистическое определение вероятности:

Статистической вероятностью события А называется относительная частота появления этого события в произведённых испытаниях, то есть:

Где - статистическая вероятность события А.

Относительная частота(частость) события А.

Число испытаний, в которых появилось события A

Общее число испытаний.

В отличие от «математической» вероятности , рассматриваемой в классическом определении, статистическая вероятность является характеристикой опытной, экспериментальной.

Если есть доля случаев, благоприятствующих событию А, которая определяется непосредственно, без каких-либо испытаний, то есть доля тех фактически произведённых испытаний, в которых событие А появилось.

Геометрическое определение вероятности:

Геометрической вероятностью события А называется отношение меры области благоприятствующей появлению события А, к мере всех области, то есть:

В одномерном случае:


Следует оценить вероятность попадания точки на CD/

Оказывается эта вероятность не зависит от места нахождения CD на отрезке АВ, а зависит лишь от его длины.


Вероятность попадания точки не зависит ни от форм, ни от месте нахождения В на А, а зависит лишь от площади данного сегмента.

Условная вероятность

Вероятность называется условной , если она вычисляется при определённых условиях и обозначается:

Это вероятность события А. Вычисляется при условии, что событие В уже произошло.

Пример. Производим испытание, извлекаем две карты из колоды: Первая вероятность является безусловной.

Вычисляем вероятность извлечения туза из колоды:

Вычисляем появление 2-тузув из колоды:

А*В – совместное появление событий

теорема умножения вероятностей

Следствие:

Теорема умножения для совместного появления событий имеет вид:

То есть каждая последующая вероятность вычисляется с тем учётом, что все предыдущие условия уже произошли.

Независимость события:

Независимыми называются 2 события, если появление одного не противоречит появлению другого.

Например, если тузы из колоды извлекаются повторно, тогда они между собой независимы. Повторно, то есть карту посмотрели и вернули обратно в колоду.

Совместные и несовместные события:

Совместными называются 2 события, если появление одного из них не противоречит появлению другого.

Теорема сложения вероятностей совместных событий:

Вероятность появления одного из двух совместных событий равна сумме вероятностей этих событий без их совместного появления.

Для трёх совместных событий:

Несовместными называются события, если никакие два из них не могут появиться одновременно в результате однократного испытания случайного эксперимента.

Теорема: Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий.

Вероятность суммы событий:

Теорема сложения вероятностей:

Вероятность суммы конечного числа несовместных событий равна сумме вероятностей этих событий:

Следствие 1:

Сумма вероятностей событий, образующих полную группу равна единице:

Следствие 2:

Замечание: Следует подчеркнуть, что рассмотренная теорема сложения применима только для несовместных событий.

Вероятность противоположных событий:

Противоположными называются два единственно возможных события, образующих полную группу. Одно из двух противоположных событий обозначено через А , другое – через .

Пример: Попадание и промах при выстреле по цели – противоположные события. Если A – попадание, то – промах.

Теорема: Сумма вероятностей противоположных событий равна единице:

Замечание 1: Если вероятность одного из двух противоположных событий обозначена через p, то вероятность другого события обозначают через q Таким образом, в силу предыдущей теоремы:

Замечание 2: При решении задач на отыскание вероятности события A часто выгодно сначала вычислить вероятность события , а затем найти искомую вероятность по формуле:

Вероятность появления хотя бы одного события:

Допустим, что в результате эксперимента может появиться одно, какая-то часть или ни одно событие.

Теорема: Вероятность появления хотя бы одного события из совокупности независимых событий равна разности между единицей и их вероятностью не появления событий .